Advertisements
Advertisements
Question
Answer the following question:
Find the value of x if
`|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0
Solution
`|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0
∴ 1(–10x2 + 10x) – 4(5x2 + 5) + 20(2x + 2) = 0
∴ –10x2 + 10x – 20x2 – 20 + 40x + 40 = 0
∴ – 30x2 + 50x + 20 = 0
∴ 3x2 – 5x – 2 = 0 ...[Dividing throughtout by (–10)]
∴ 3x2 – 6x + x – 2 = 0
∴ 3x(x – 2) + 1(x – 2) = 0
∴ (x – 2) (3x + 1) = 0
∴ x – 2 = 0 or 3x + 1 = 0
∴ x = 2 or x = `-1/3`
APPEARS IN
RELATED QUESTIONS
Find the value of determinant :
`|(2, -4),(7, -15)|`
Find the value of determinant :
`|(2"i", 3),(4, -"i")|`
Find the value of determinant :
`|(3, -4, 5),(1, 1, -2),(2, 3, 1)|`
Find the value of determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Find the value of x if
`|(x^2 - x + 1, x + 1),(x + 1, x + 1)|` = 0
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)|` = 29
Find x and y if `|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|` = x + iy where i2 = – 1
Answer the following question:
Evaluate `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
Answer the following question:
Evaluate `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Answer the following question:
Find the value of x if
`|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)| = 0`