Advertisements
Advertisements
Question
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)|` = 29
Solution
`|(x, -1, 2),(2x, 1, -3),(3, -4, 5)|` = 29
∴ `x|(1, -3),(-4, 5)|-(-1)|(2x, -3),(3, 5)|+ 2|(2x, 1),(3, -4)|` = 29
∴ x(5 – 12) + 1(10x + 9) + 2(–8x – 3) = 29
∴ –7x + 10x + 9 – 16x – 6 = 29
∴ –13x + 3 = 29
∴ –13x = 26
∴ x = – 2
APPEARS IN
RELATED QUESTIONS
Find the value of determinant :
`|(2, -4),(7, -15)|`
Find the value of determinant :
`|(2"i", 3),(4, -"i")|`
Find the value of determinant :
`|(3, -4, 5),(1, 1, -2),(2, 3, 1)|`
Find the value of determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Find the value of x if
`|(x^2 - x + 1, x + 1),(x + 1, x + 1)|` = 0
Find x and y if `|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|` = x + iy where i2 = – 1
Answer the following question:
Evaluate `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
Answer the following question:
Evaluate `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Answer the following question:
Find the value of x if
`|(1, 4, 20),(1, -2, -5),(1, 2x, 5x^2)|` = 0
Answer the following question:
Find the value of x if
`|(1, 2x, 4x),(1, 4, 16),(1, 1, 1)| = 0`