Advertisements
Advertisements
Question
Answer the following question in detail.
Why an astronaut in an orbiting satellite has a feeling of weightlessness?
Solution
- For an astronaut, in a satellite, the net force towards the center of the Earth will always be, F = mg – N.
where, N is the normal reaction. - In the case of a revolving satellite, the satellite is performing a circular motion. The acceleration for this motion is centripetal, which is provided by the gravitational acceleration g at the location of the satellite.
- In this case, the downward acceleration, ad = g, or the satellite (along with the astronaut) is in the state of free fall.
- Thus, the net force acting on astronaut will be, F = mg – mad = 0 i.e., the apparent weight will be zero, giving the feeling of total weightlessness.
APPEARS IN
RELATED QUESTIONS
No part of India is situated on the equator. Is it possible to have a geostationary satellite which always remains over New Delhi?
Two satellites going in equatorial plane have almost same radii. As seen from the earth one moves from east one to west and the other from west to east. Will they have the same time period as seen from the earth? If not which one will have less time period?
The time period of an earth-satellite in circular orbit is independent of
A satellite is orbiting the earth close to its surface. A particle is to be projected from the satellite to just escape from the earth. The escape speed from the earth is ve. Its speed with respect to the satellite
At what rate should the earth rotate so that the apparent g at the equator becomes zero? What will be the length of the day in this situation?
A pendulum having a bob of mass m is hanging in a ship sailing along the equator from east to west. When the ship is stationary with respect to water the tension in the string is T0. (a) Find the speed of the ship due to rotation of the earth about its axis. (b) Find the difference between T0 and the earth's attraction on the bob. (c) If the ship sails at speed v, what is the tension in the string? Angular speed of earth's rotation is ω and radius of the earth is R.
The radius of a planet is R1 and a satellite revolves round it in a circle of radius R2. The time period of revolution is T. Find the acceleration due to the gravitation of the planet at its surface.
Answer the following question.
Define the binding energy of a satellite.
Answer the following question.
What is periodic time of a geostationary satellite?
Derive an expression for the critical velocity of a satellite.
Derive an expression for the binding energy of a body at rest on the Earth’s surface of a satellite.
Describe how an artificial satellite using a two-stage rocket is launched in an orbit around the Earth.
Answer the following question in detail.
Two satellites A and B are revolving round a planet. Their periods of revolution are 1 hour and 8 hour respectively. The radius of orbit of satellite B is 4 × 104 km. Find radius of orbit of satellite A.
Two satellites of a planet have periods of 32 days and 256 days. If the radius of the orbit of the former is R, the orbital radius of the Latter is ______
The kinetic energy of a revolving satellite (mass m) at a height equal to thrice the radius of the earth (R) is ______.
What is the minimum energy required to launch a satellite of mass 'm' from the surface of the earth of mass 'M' and radius 'R' at an altitude 2R?
An aircraft is moving with uniform velocity 150 m/s in the space. If all the forces acting on it are balanced, then it will ______.
Reason of weightlessness in a satellite is ____________.
A geostationary satellite is orbiting the earth at the height of 6R above the surface of earth. R being radius of earth. The time period of another satellite at a height of 2.5 R from the surface of earth is ____________.
If the Earth-Sun distance is held constant and the mass of the Sun is doubled, then the period of revolution of the earth around the Sun will change to ____________.
Two satellites of masses m and 4m orbit the earth in circular orbits of radii 8r and r respectively. The ratio of their orbital speeds is ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
A satellite of mass 'm', revolving round the earth of radius 'r' has kinetic energy (E). Its angular momentum is ______.
A satellite is revolving in a circular orbit around the earth has total energy 'E'. Its potential energy in that orbit is ______.
Is it possibe for a body to have inertia but no weight?
Show the nature of the following graph for a satellite orbiting the earth.
- KE vs orbital radius R
- PE vs orbital radius R
- TE vs orbital radius R.
Two satellites are orbiting around the earth in circular orbits of same radius. One of them is 10 times greater in mass than the other. Their period of revolutions are in the ratio ______.