Advertisements
Advertisements
Question
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
x2 – 3x + 4 = 0
Solution
समीकरण x2 – 3x + 4 = 0 का कोई वास्तविक मूल नहीं है।
D = b2 – 4ac
= (–3)2 – 4(1)(4)
= 9 – 16 < 0
अतः, जड़ें काल्पनिक हैं।
APPEARS IN
RELATED QUESTIONS
निम्न द्विघात समीकरण के मूल की प्रकृति ज्ञात कीजिए। यदि मूल का अस्तित्व हो तो उन्हें ज्ञात कीजिए:
`3x^2 - 4sqrt3x + 4 = 0`
निम्न द्विघात समीकरण में k का ऐसा मान ज्ञात कीजिए कि उसके दो बराबर मूल हों।
2x2 + kx + 3 = 0
क्या निम्न स्थिति संभव है? यदि है तो उनकी वर्तमान आयु ज्ञात कीजिए। दो मित्रों की आयु का योग 20 वर्ष है। चार वर्ष पूर्व उनकी आयु (वर्षों में) का गुणनफल 48 था।
द्विघात समीकरण `2x^2 - sqrt(5)x + 1 = 0` के ______।
निम्नलिखित में से किस समीकरण के कोई वास्तविक मूल नहीं हैं?
समीकरण (x2 + 1)2 – x2 = 0 ______.
यदि किसी द्विघात समीकरण में, x2 का गुणांक और अचर पद एक चिन्ह के हों तथा x का गुणांक शून्य हो, तो उस द्विघात समीकरण का कोई वास्तविक मूल नहीं होता है।
यदि b = 0, c < 0 है, तो क्या यह सत्य है कि x2 + bx + c = 0 के मूल संख्यात्मक रूप से बराबर परंतु विपरीत चिन्हों के होंगे? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
5x2 + 13x + 8 = 0
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
`x^2 - 3sqrt(5)x + 10 = 0`