Advertisements
Advertisements
Question
Calculate `"E"_"cell"^circ` of the following galvanic cell:
Mg(s) / Mg2+(1 M) // Ag+ (1 M) / Ag(s) if `"E"_"Mg"^circ` = – 2.37 V and `"E"_"Ag"^circ` = 0.8 V. Write cell reactions involved in the above cell. Also mention if cell reaction is spontaneous or not.
Solution
Given: `"E"_"Mg"^circ` = – 2.37 V and `"E"_"Ag"^circ` = 0.8 V
To find: Standard cell potential
Formula: `"E"_"cell"^circ = "E"_"cathode"^circ - "E"_"anode"^circ`
Calculation: `"E"_"cell"^circ = "E"_"cathode"^circ - "E"_"anode"^circ`
`"E"_"cell"^circ = "E"_"Ag"^circ - "E"_"Mg"^circ`
= (0.8 V) - (- 2.37 V) = 3.17 V
The standard cell potential for the reaction is 3.17 V.
Cell reactions:
Electrode reactions are
At anode: | \[\ce{Mg_{(s)} -> Mg^{2+}_{ (aq)} + 2e-}\] |
At cathode: | \[\ce{Ag^+_{ (aq)} + e^- -> Ag_{(s)}}\] |
Overall cell reaction- \[\ce{Mg_{(s)} + 2Ag^+_{ (aq)} -> Mg^{2+}_{ (aq)} + 2Ag_{(s)}}\] |
Since the standard cell potential is positive, the cell reaction is spontaneous.
RELATED QUESTIONS
Choose the most correct option.
The standard potential of the cell in which the following reaction occurs:
H2 (g,1 atm) + Cu2+ (1M) → 2H+ (1M) + Cu(s),
`("E"_"Cu"^circ = 0.34 "V")` is
Answer the following in one or two sentences.
Write Nernst equation. What part of it represents the correction factor for nonstandard state conditions?
Answer the following in one or two sentences.
Under what conditions the cell potential is called standard cell potential?
Answer the following:
Calculate emf of the cell:
Zn(s) |Zn2+ (0.2 M)||H+ (1.6 M)| H2(g, 1.8 atm)| Pt at 25 °C.
Answer the following:
Predict whether the following reaction would occur spontaneously under standard state condition.
`"Ca"_(("s")) + "Cd"_(("aq"))^(2+) -> "Ca"_(("aq"))^(2+) + "Cd"_(("s"))`
Answer the following:
Predict whether the following reaction would occur spontaneously under standard state condition.
`2"Br"_(("aq"))^(-) + "Sn"_(("aq"))^(2+) -> "Br"_(2("l")) + "Sn"_(("s"))`
Standard reduction electrode potentials of three metals A, B and C are +0.5 V, −3.0 V and −1.2 V respectively. The order of reducing powers of these metals is ____________.
The correct representation of Nernst's equation for half-cell reaction \[\ce{Cu^{2+} (aq) + e^- -> Cu^+(aq)}\] is ______.
Nernst equation for the following cell reaction at 298 K is:
\[\ce{Mg_{(s)} | Mg^{2+}_{( aq)} || Ag^+_{( aq)} | Ag_{(s)}}\]
The reduction potential of a half-cell consisting of nickel electrode in 0.1 M NiSO4 solution at 25°C is ____________.
(E0 = −0.257 V)
Identify the strongest reducing agent from the data given below:
Element | `"E"^0 ("V")` |
Al | −1.66 |
Fe | −0.44 |
Hg | +0.79 |
Cu | +0.337 |
What is the standard emf of the following cell?
\[\ce{Ni_{(s)} | Ni^{2+}_{( aq)} || Au^{3+}_{( aq)} | Au_{(s)}}\]
if \[\ce{E^0_{Ni}}\] = −0.25 V, \[\ce{E^0_{Au}}\] = 1.50 V.
What is the ΔG0 for the following reaction?
\[\ce{Al_{(s)} + Fe^{3+}_{( aq)} -> Al^{3+}_{( aq)} + Fe_{(s)}}\]; \[\ce{E^0_{cell}}\] = +2.43
The standard electrode potential of Zn and Ni are - 0.76 V and - 0.25 V respectively. If the reaction takes place in the cell constructed between these two electrodes is spontaneous. What is the standard emf of the cell?
The tendency of an electrode to lose electrons is known as ______
The standard EMF for the cell reaction,
\[\ce{Zn + Cu^{2+} -> Cu + Zn^{2+}}\] is 1.1 volt at 25°C.
The EMF for the cell reaction, when 0.1 M Cu2+ and 0.1 M Zn2+ solutions are used, at 25°C is:
Which element from the following has the highest negative standard reduction potential?
Construct a cell from Ni2+ | Ni and Cu2+ | Cu Cu half cells. Write the cell reaction and calculate `E_("cell")^0`
`(E_("Ni")^0 = - 0.236 V and E_("Cu")^0 = + 0.337 V)`
Calculate the emf of the following cell at 25°C.
Zn(s)|Zn2+(0.08 M) || Cu2+(0.l M) |Cu(s)
E0zn = − 0.76 V, E0cu = 0.36 V.
Write net cell reaction.
Write the value of `(2.303 RT)/F` in the Nernst equation?
Write the four applications of emf series.