English

Calculate Q.D. from the following data: X (less than) 10 20 30 40 50 60 70 Frequency 5 8 15 20 30 33 35 - Mathematics and Statistics

Advertisements
Advertisements

Question

Calculate Q.D. from the following data:

X (less than) 10 20 30 40 50 60 70
Frequency 5 8 15 20 30 33 35
Sum

Solution

We construct the less than cumulative frequency table as follows:

Class f Less than cumulative frequency
(c.f.)
0 – 10 5 5
10 – 20 3 8
20 – 30 7 15 ← Q1
30 – 40 5 20
40 – 50 10 30 ← Q3
50 – 60 3 33
60 – 70 2 35
Total N = 35  

Here, N = 35

Q1 class = class containing `("N"/4)^"th"` observation

∴ `"N"/4 = 35/4` = 8.75
Cumulative frequency which is just greater than (or equal to) 8.75 is 15.
∴ Q1 lies in the class 20 – 30.
∴ L = 20, c.f. = 8, f = 7, h = 10

∴ Q1 = `"L" + "h"/"f"("N"/4 - "c.f.")`

= `20 + 10/7(8.75 - 8)`

= `20 + 10/7 xx 0.75`

= 20 + 1.07
∴ Q1 = 21.07

Q3 class = class containing `((3"N")/4)^"th"` observation

∴ `(3"N")/4 = (3 xx 35)/4` = 26.25
Cumulative frequency which is just greater than (or equal to) 26.25 is 30.
∴ Q3 lies in the class 40 – 50.
∴ L = 40, c.f. = 20, f = 10, h = 10

∴ Q3 = `"L" + "h"/"f"((3"N")/4 - "c.f.")`

= `40 + 10/10(26.25 - 20)`

= 40 + 6.25
∴ Q3 = 46.25

Q.D. = `("Q"_3 - "Q"_1)/2`

= `(46.25 - 21.07)/2`

= `(25.18)/2`

= 12.59

shaalaa.com
Measures of Dispersion - Quartile Deviation (Semi - Inter Quartile Range)
  Is there an error in this question or solution?
Chapter 2: Measures of Dispersion - Miscellaneous Exercise 2 [Page 35]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Commerce) [English] 11 Standard Maharashtra State Board
Chapter 2 Measures of Dispersion
Miscellaneous Exercise 2 | Q 5 | Page 35
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×