English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Calculate the Laspeyre’s, Paasche’s and Fisher’s price index number for the following data. Interpret on the data. Commodities Base Year Current Year Price Quantity Price Quantity A 170 562 72 632 - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Calculate the Laspeyre’s, Paasche’s and Fisher’s price index number for the following data. Interpret on the data.

Commodities Base Year Current Year
Price Quantity Price  Quantity
A 170 562 72 632
B 192 535 70 756
C 195 639 95 926
D 1987 128 92 255
E 1985 542 92 632
F 150 217 180 314
7 12.6 12.7 12.5 12.8
8 12.4 12.3 12.6 12.5
9 12.6 12.5 12.3 12.6
10 12.1 12.7 12.5 12.8
Chart
Sum

Solution

Commodities Base Year Current Year p0q0 p0q1 p1q0 p1q1
p0 q0 p1  q1
A 170 562 72 632 95540 107440 40464 45504
B 192 535 70 756 102720 145152 37450 52920
C 195 639 95 926 124605 180570 60705 87970
D 1987 128 92 255 23936 47685 11776 23460
E 1985 542 92 632 100270 116920 49864 58144
F 150 217 180 314 32550 47100 39060 56520
7 12.6 12.7 12.5 12.8 160.02 161.28 158.75 160
8 12.4 12.3 12.6 12.5 152.52 155 154.98 157.5
9 12.6 12.5 12.3 12.6 157.50 158.80 153.75 155
10 12.1 12.7 12.5 12.8 153.67 154.90 158.75 160
Total 480244.71 645496.98 239945.23 325150.5

Lasperyre’s price Index number

`"P"_01^"L" = (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`

= `239945.23/480244.71 xx 100`

= 49.96

Passhe's price index number

`"P"_01^"p" = (sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`

= `325150.5/645496.98 xx 100`

= 50.37

Fisher's price index number

`"P"_01^"F" = [sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1))] xx 100`

= `[sqrt((239945.23 xx 325150.5)/(480224.71 xx 645496.98))] xx 100`

= `sqrt((3572000)/(1827840)) xx 100`

= `sqrt(1.9542) xx 100`

= `1.3979 xx 100`

= 139.79

= 139.8

Time reversal test

Test is satisfied when `"P"_01 xx "P"_10` = 1

`"P"_01 = sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1))`

= `sqrt((1900 xx 1880)/(1360 xx 1344))`

`"P"_10 = sqrt((sum"p"_0"q"_1 xx sum"p"_0"q"_0)/(sum"p"_1"q"_1 xx sum"p"_1"q"_0))`

= `sqrt((1344 xx 1360)/(1880 xx 1900))`

`"P"_01 xx "P"_10 = sqrt((1900 xx 1880 xx 1344 xx 1360)/(1360 xx 1344 xx 1880 xx 1900))`

= `sqrt(1)`

Hence Fisher’s Ideal Index satisfies Time reversal test

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Applied Statistics - Miscellaneous problems [Page 231]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 9 Applied Statistics
Miscellaneous problems | Q 4 | Page 231
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×