Advertisements
Advertisements
Question
Calculate the Laspeyre’s, Paasche’s and Fisher’s price index number for the following data. Interpret on the data.
Commodities | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 170 | 562 | 72 | 632 |
B | 192 | 535 | 70 | 756 |
C | 195 | 639 | 95 | 926 |
D | 1987 | 128 | 92 | 255 |
E | 1985 | 542 | 92 | 632 |
F | 150 | 217 | 180 | 314 |
7 | 12.6 | 12.7 | 12.5 | 12.8 |
8 | 12.4 | 12.3 | 12.6 | 12.5 |
9 | 12.6 | 12.5 | 12.3 | 12.6 |
10 | 12.1 | 12.7 | 12.5 | 12.8 |
Solution
Commodities | Base Year | Current Year | p0q0 | p0q1 | p1q0 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 170 | 562 | 72 | 632 | 95540 | 107440 | 40464 | 45504 |
B | 192 | 535 | 70 | 756 | 102720 | 145152 | 37450 | 52920 |
C | 195 | 639 | 95 | 926 | 124605 | 180570 | 60705 | 87970 |
D | 1987 | 128 | 92 | 255 | 23936 | 47685 | 11776 | 23460 |
E | 1985 | 542 | 92 | 632 | 100270 | 116920 | 49864 | 58144 |
F | 150 | 217 | 180 | 314 | 32550 | 47100 | 39060 | 56520 |
7 | 12.6 | 12.7 | 12.5 | 12.8 | 160.02 | 161.28 | 158.75 | 160 |
8 | 12.4 | 12.3 | 12.6 | 12.5 | 152.52 | 155 | 154.98 | 157.5 |
9 | 12.6 | 12.5 | 12.3 | 12.6 | 157.50 | 158.80 | 153.75 | 155 |
10 | 12.1 | 12.7 | 12.5 | 12.8 | 153.67 | 154.90 | 158.75 | 160 |
Total | 480244.71 | 645496.98 | 239945.23 | 325150.5 |
Lasperyre’s price Index number
`"P"_01^"L" = (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
= `239945.23/480244.71 xx 100`
= 49.96
Passhe's price index number
`"P"_01^"p" = (sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
= `325150.5/645496.98 xx 100`
= 50.37
Fisher's price index number
`"P"_01^"F" = [sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1))] xx 100`
= `[sqrt((239945.23 xx 325150.5)/(480224.71 xx 645496.98))] xx 100`
= `sqrt((3572000)/(1827840)) xx 100`
= `sqrt(1.9542) xx 100`
= `1.3979 xx 100`
= 139.79
= 139.8
Time reversal test
Test is satisfied when `"P"_01 xx "P"_10` = 1
`"P"_01 = sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1))`
= `sqrt((1900 xx 1880)/(1360 xx 1344))`
`"P"_10 = sqrt((sum"p"_0"q"_1 xx sum"p"_0"q"_0)/(sum"p"_1"q"_1 xx sum"p"_1"q"_0))`
= `sqrt((1344 xx 1360)/(1880 xx 1900))`
`"P"_01 xx "P"_10 = sqrt((1900 xx 1880 xx 1344 xx 1360)/(1360 xx 1344 xx 1880 xx 1900))`
= `sqrt(1)`
Hence Fisher’s Ideal Index satisfies Time reversal test
APPEARS IN
RELATED QUESTIONS
Index numbers that measure changes in the level of output or physical volume of production in the economy −
Identify & explain the concept from the given illustration.
Agricultural Research Institute constructed an index number to measure changes in the production of raw cotton in Maharashtra during the period 2015-2020.
Define Laspeyre’s price index number
Write note on Fisher’s price index number
Define true value ratio
State the uses of cost of Living Index Number
Calculate the cost of living index by aggregate expenditure method:
Commodity | Weight 2010 |
Price (Rs.) | |
2010 | 2015 | ||
P | 80 | 22 | 25 |
Q | 30 | 30 | 45 |
R | 25 | 42 | 50 |
S | 40 | 25 | 35 |
T | 50 | 36 | 52 |
Compute the consumer price index for 2015 on the basis of 2014 from the following data.
Commodities | Quantities | Prices in 2015 | Prices in 2016 |
A | 6 | 5.75 | 6.00 |
B | 6 | 5.00 | 8.00 |
C | 1 | 6.00 | 9.00 |
D | 6 | 8.00 | 10.00 |
E | 4 | 2.00 | 1.50 |
F | 1 | 20.00 | 15.00 |
An Enquiry was made into the budgets of the middle class families in a city gave the following information.
Expenditure | Food | Rent | Clothing | Fuel | Rice |
Price(2010) | 150 | 50 | 100 | 20 | 60 |
Price(2011) | 174 | 60 | 125 | 25 | 90 |
Weights | 35 | 15 | 20 | 10 | 20 |
What changes in the cost of living have taken place in the middle class families of a city?
Find the odd word out:
Features of Index Number: