Advertisements
Advertisements
प्रश्न
Calculate the Laspeyre’s, Paasche’s and Fisher’s price index number for the following data. Interpret on the data.
Commodities | Base Year | Current Year | ||
Price | Quantity | Price | Quantity | |
A | 170 | 562 | 72 | 632 |
B | 192 | 535 | 70 | 756 |
C | 195 | 639 | 95 | 926 |
D | 1987 | 128 | 92 | 255 |
E | 1985 | 542 | 92 | 632 |
F | 150 | 217 | 180 | 314 |
7 | 12.6 | 12.7 | 12.5 | 12.8 |
8 | 12.4 | 12.3 | 12.6 | 12.5 |
9 | 12.6 | 12.5 | 12.3 | 12.6 |
10 | 12.1 | 12.7 | 12.5 | 12.8 |
उत्तर
Commodities | Base Year | Current Year | p0q0 | p0q1 | p1q0 | p1q1 | ||
p0 | q0 | p1 | q1 | |||||
A | 170 | 562 | 72 | 632 | 95540 | 107440 | 40464 | 45504 |
B | 192 | 535 | 70 | 756 | 102720 | 145152 | 37450 | 52920 |
C | 195 | 639 | 95 | 926 | 124605 | 180570 | 60705 | 87970 |
D | 1987 | 128 | 92 | 255 | 23936 | 47685 | 11776 | 23460 |
E | 1985 | 542 | 92 | 632 | 100270 | 116920 | 49864 | 58144 |
F | 150 | 217 | 180 | 314 | 32550 | 47100 | 39060 | 56520 |
7 | 12.6 | 12.7 | 12.5 | 12.8 | 160.02 | 161.28 | 158.75 | 160 |
8 | 12.4 | 12.3 | 12.6 | 12.5 | 152.52 | 155 | 154.98 | 157.5 |
9 | 12.6 | 12.5 | 12.3 | 12.6 | 157.50 | 158.80 | 153.75 | 155 |
10 | 12.1 | 12.7 | 12.5 | 12.8 | 153.67 | 154.90 | 158.75 | 160 |
Total | 480244.71 | 645496.98 | 239945.23 | 325150.5 |
Lasperyre’s price Index number
`"P"_01^"L" = (sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx 100`
= `239945.23/480244.71 xx 100`
= 49.96
Passhe's price index number
`"P"_01^"p" = (sum"p"_1"q"_1)/(sum"p"_0"q"_1) xx 100`
= `325150.5/645496.98 xx 100`
= 50.37
Fisher's price index number
`"P"_01^"F" = [sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1))] xx 100`
= `[sqrt((239945.23 xx 325150.5)/(480224.71 xx 645496.98))] xx 100`
= `sqrt((3572000)/(1827840)) xx 100`
= `sqrt(1.9542) xx 100`
= `1.3979 xx 100`
= 139.79
= 139.8
Time reversal test
Test is satisfied when `"P"_01 xx "P"_10` = 1
`"P"_01 = sqrt((sum"p"_1"q"_0 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_0"q"_1))`
= `sqrt((1900 xx 1880)/(1360 xx 1344))`
`"P"_10 = sqrt((sum"p"_0"q"_1 xx sum"p"_0"q"_0)/(sum"p"_1"q"_1 xx sum"p"_1"q"_0))`
= `sqrt((1344 xx 1360)/(1880 xx 1900))`
`"P"_01 xx "P"_10 = sqrt((1900 xx 1880 xx 1344 xx 1360)/(1360 xx 1344 xx 1880 xx 1900))`
= `sqrt(1)`
Hence Fisher’s Ideal Index satisfies Time reversal test
APPEARS IN
संबंधित प्रश्न
State with reason whether you agree or disagree with the following statement:
Index numbers measure changes in the price level only.
Identify & explain the concept from the given illustration.
Agricultural Research Institute constructed an index number to measure changes in the production of raw cotton in Maharashtra during the period 2015-2020.
State the uses of Index Number
Define Laspeyre’s price index number
Write note on Fisher’s price index number
State the test of adequacy of index number
Calculate by a suitable method, the index number of price from the following data:
Commodity | 2002 | 2012 | ||
Price | Quantity | Price | Quantity | |
A | 10 | 20 | 16 | 10 |
B | 12 | 34 | 18 | 42 |
C | 15 | 30 | 20 | 26 |
Construct the cost of living Index number for 2015 on the basis of 2012 from the following data using family budget method.
Commodity | Price | Weights | |
2012 | 2015 | ||
Rice | 250 | 280 | 10 |
Wheat | 70 | 85 | 5 |
Corn | 150 | 170 | 6 |
Oil | 25 | 35 | 4 |
Dhal | 85 | 90 | 3 |
Choose the correct alternative:
Laspeyre’s index = 110, Paasche’s index = 108, then Fisher’s Ideal index is equal to:
Find the odd word out:
Features of Index Number: