Advertisements
Advertisements
प्रश्न
Fit a straight line trend by the method of least squares to the following data
Year | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
Sales | 50.3 | 52.7 | 49.3 | 57.3 | 56.8 | 60.7 | 62.1 | 58.7 |
उत्तर
Year (x) |
Sales (y) |
x = `((x - 1983.5))/0.5` | xy | x2 | Trend values (yt) |
1980 | 50.3 | – 7 | – 352.1 | 49 | 50.1775 |
1981 | 52.7 | – 5 | – 263.5 | 25 | 51.8375 |
1982 | 49.3 | – 3 | – 147.9 | 9 | 53.4975 |
1983 | 57.3 | – 1 | – 57.3 | 1 | 55.1575 |
1984 | 56.8 | 1 | 56.8 | 1 | 56.8175 |
1985 | 60.7 | 3 | 182.1 | 9 | 58.4775 |
1986 | 62.1 | 5 | 310.5 | 25 | 60.1375 |
1987 | 58.7 | 7 | 410.9 | 49 | 61.7975 |
N = 8 | `sum` = 447.9 | `sumx` = 0 | `sumxy` = 139.5 | `sumx^2` = 168 | `sumy"t"` = 447.9 |
a = `(sumy)/"n" = 447.9/8` = 55.9875
b = `(sumxy)/(sumx^2) = 139.5/168` = 0.830
Therefore, the required equation of the straight line trend is given by
y = a + bx
y = 55.9875 + 0.830x
⇒ y = 55.9875 + 0.83`((x - 1983.5)/0.5)`
The trend values can be obtained by
When x = 1980
y = 55.9875 + 0.83 `((1980 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 7)
= 55.9875 – 5.81
= 50.1775
When x = 1981
y = 55.9875 + 0.83 `((1981 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 5)
= 55.9875 – 4.15
= 51.8375
When x = 1982
y = 55.9875 + 0.83 `((1981 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 3)
= 55.9875 – 2.49
= 53.4975
When x = 1983
y = 55.9875 + 0.83 `((1983 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 1)
= 55.9875 – 0.83
= 55.1575
When x = 1984
y = 55.9875 + 0.83 `((1984 - 1983.5)/0.5)`
= 55.9875 + 0.83(1)
= 56.8175
When x = 1985
y = 55.9875 + 0.83 `((1985 - 1983.5)/0.5)`
= 55.9875 + 0.83(3)
= 55.9875 + 2.49
= 58.4775
When x = 1986
y = 55.9875 + 0.83 `((1986 - 1983.5)/0.5)`
= 55.9875 + 0.83(5)
= 55.9875 + 4.15
= 60.1375
When x = 1987
y = 55.9875 + 0.83 `((1987 - 1983.5)/0.5)`
= 55.9875 + 0.83(7)
= 55.9875 + 5.81
= 61.7975
APPEARS IN
संबंधित प्रश्न
What is the need for studying time series?
Mention the components of the time series
Define seasonal index
Compute the average seasonal movement for the following series
Year | Quarterly Production | |||
I | II | III | IV | |
2002 | 3.5 | 3.8 | 3.7 | 3.5 |
2203 | 3.6 | 4.2 | 3. | 4.1 |
2004 | 3.4 | 3.9 | 37 | 4.2 |
2005 | 4.2 | 4.5 | 3 | 4.4 |
2006 | 3.9 | 4.4 | 4.2 | 4.6 |
The annual production of a commodity is given as follows:
Year | production (in tones) |
1995 | 155 |
1996 | 162 |
1997 | 171 |
19988 | 182 |
1999 | 158 |
2000 | 880 |
2001 | 178 |
Fit a straight line trend by the method of least squares
The sales of a commodity in tones varied from January 2010 to December 2010 as follows:
In Year 2010 | Sales (in tones) |
Jan | 280 |
Feb | 240 |
Mar | 270 |
Apr | 300 |
May | 280 |
Jun | 290 |
Jul | 210 |
Aug | 200 |
Sep | 230 |
Oct | 200 |
Nov | 230 |
Dec | 210 |
Fit a trend line by the method of semi-average
The following table shows the number of salesmen working for a certain concern:
Year | 1992 | 1993 | 1994 | 1995 | 1996 |
No. of salesman |
46 | 48 | 42 | 56 | 52 |
Use the method of least squares to fit a straight line and estimate the number of salesmen in 1997
Choose the correct alternative:
Least square method of fitting a trend is
The nth term of the series 2 + 4 + 7 + 11 + ..... is
Sum of n terms of series 1.3 + 3.5 + 5.7 + ______ is