Advertisements
Advertisements
प्रश्न
Fit a straight line trend by the method of least squares to the following data
Year | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 |
Sales | 50.3 | 52.7 | 49.3 | 57.3 | 56.8 | 60.7 | 62.1 | 58.7 |
उत्तर
Year (x) |
Sales (y) |
x = `((x - 1983.5))/0.5` | xy | x2 | Trend values (yt) |
1980 | 50.3 | – 7 | – 352.1 | 49 | 50.1775 |
1981 | 52.7 | – 5 | – 263.5 | 25 | 51.8375 |
1982 | 49.3 | – 3 | – 147.9 | 9 | 53.4975 |
1983 | 57.3 | – 1 | – 57.3 | 1 | 55.1575 |
1984 | 56.8 | 1 | 56.8 | 1 | 56.8175 |
1985 | 60.7 | 3 | 182.1 | 9 | 58.4775 |
1986 | 62.1 | 5 | 310.5 | 25 | 60.1375 |
1987 | 58.7 | 7 | 410.9 | 49 | 61.7975 |
N = 8 | `sum` = 447.9 | `sumx` = 0 | `sumxy` = 139.5 | `sumx^2` = 168 | `sumy"t"` = 447.9 |
a = `(sumy)/"n" = 447.9/8` = 55.9875
b = `(sumxy)/(sumx^2) = 139.5/168` = 0.830
Therefore, the required equation of the straight line trend is given by
y = a + bx
y = 55.9875 + 0.830x
⇒ y = 55.9875 + 0.83`((x - 1983.5)/0.5)`
The trend values can be obtained by
When x = 1980
y = 55.9875 + 0.83 `((1980 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 7)
= 55.9875 – 5.81
= 50.1775
When x = 1981
y = 55.9875 + 0.83 `((1981 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 5)
= 55.9875 – 4.15
= 51.8375
When x = 1982
y = 55.9875 + 0.83 `((1981 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 3)
= 55.9875 – 2.49
= 53.4975
When x = 1983
y = 55.9875 + 0.83 `((1983 - 1983.5)/0.5)`
= 55.9875 + 0.83(– 1)
= 55.9875 – 0.83
= 55.1575
When x = 1984
y = 55.9875 + 0.83 `((1984 - 1983.5)/0.5)`
= 55.9875 + 0.83(1)
= 56.8175
When x = 1985
y = 55.9875 + 0.83 `((1985 - 1983.5)/0.5)`
= 55.9875 + 0.83(3)
= 55.9875 + 2.49
= 58.4775
When x = 1986
y = 55.9875 + 0.83 `((1986 - 1983.5)/0.5)`
= 55.9875 + 0.83(5)
= 55.9875 + 4.15
= 60.1375
When x = 1987
y = 55.9875 + 0.83 `((1987 - 1983.5)/0.5)`
= 55.9875 + 0.83(7)
= 55.9875 + 5.81
= 61.7975
APPEARS IN
संबंधित प्रश्न
Mention the components of the time series
Define secular trend
Discuss about irregular variation
Compute the average seasonal movement for the following series
Year | Quarterly Production | |||
I | II | III | IV | |
2002 | 3.5 | 3.8 | 3.7 | 3.5 |
2203 | 3.6 | 4.2 | 3. | 4.1 |
2004 | 3.4 | 3.9 | 37 | 4.2 |
2005 | 4.2 | 4.5 | 3 | 4.4 |
2006 | 3.9 | 4.4 | 4.2 | 4.6 |
The following table gives the number of small-scale units registered with the Directorate of Industries between 1985 and 1991. Show the growth on a trend line by the free hand method.
Year | No. of units (in '000) |
195 | 10 |
986 | 22 |
1987 | 36 |
198 | 62 |
1989 | 55 |
1990 | 0 |
1991 | 34 |
1992 | 50 |
Determine the equation of a straight line which best fits the following data
Year | 2000 | 2001 | 2002 | 2003 | 2004 |
Sales (₹ '000) | 35 | 36 | 79 | 80 | 40 |
Compute the trend values for all years from 2000 to 2004
Use the method of monthly averages to find the monthly indices for the following data of production of a commodity for the years 2002, 2003 and 2004
2002 | 2003 | 2004 |
15 | 20 | 18 |
18 | 18 | 25 |
17 | 16 | 21 |
19 | 13 | 11 |
16 | 12 | 14 |
20 | 15 | 16 |
21 | 22 | 19 |
18 | 16 | 20 |
17 | 18 | 1 |
15 | 20 | 16 |
14 | 17 | 18 |
18 | 15 | 20 |
Choose the correct alternative:
The value of ‘b’ in the trend line y = a + bx is
Choose the correct alternative:
The component of a time series attached to long term variation is trended as
The sum of the series 3.6 + 4.7 + 5.8 + ....... upto (n – 2) terms