Advertisements
Advertisements
Question
Change the order of integration and evaluate `int_0^1 int_x^sqrt(2-x^2 x dx dy)/sqrt(x^2+y^2)`
Solution
Let `int_0^1 int_x^sqrt(2-x^2 x dx dy)/sqrt(x^2+y^2)`
Region of integration is : i)` x<=y<=sqrt(2-x^2)`
ii) `0<= x<=1`
iii) `y=sqrt(2-x^2)` => `x^2+y^2=2`
Circle with centre (0,0) and radius `sqrt2`
Intersection of circle and y= x line is (1,1) in `1^(st)` quadrant.
Divide the region into two parts as shown in fig.
After changing the order of integration :
For one region : ` 0 <= x <= y`
`0 <= y <= 1`
For another region : `0<=x<= sqrt(2-y^2)`
`1 <= y <= sqrt2`
∴` int_0^1 int_0^y (x dx dy)/sqrt(x^2+y^2)`
= `int_0^1 [sqrt(x^2+y^2)]_0^y dy + int_1^sqrt2 [sqrt(x^2+y^2)]_0^sqrt(2-y^2)`
=`int_0^1 (sqrt2.y-y) dy + int_1^sqrt2(sqrt2-1) dy`
=` (sqrt2-1) [y^2/2]_0^1+[sqrt2y-y^2/2]sqrt2/1`
=` 1-1/sqrt2`
∴ `I=sqrt(2-1)/sqrt2`