Advertisements
Advertisements
Question
Evaluate `int_0^1sqrt(sqrtx-x)dx`
Sum
Solution
Let I = `int_0^1sqrt(sqrtx-x)dx`
I = `int_0^1sqrt(sqrtx-sqrtx.sqrtx)dx`
Take `sqrtx` common
I`=int_0^1x^(1/4)sqrt(1-x^(1/2))dx`
Put `x6(1/2)=t`
Squaring both sides,
`therefore x=t^2`
Differentiate w.r.t x,
∴ 𝒅𝒙 = 𝟐𝒕.𝒅𝒕
Limits after substitution : Lim ⟶[ 0,1 ]
`therefore I=int_0^1t^(1/2)sqrt(1-t).2.tdt`
`=2int_0^1t^(3/2)sqrt(1-t) dt`
`=2beta(5/2,3/2)` ...........`{int_0^1t^m.(1-t)^n=beta(m+1,n+1)}`
`therefore I = pi/8`
shaalaa.com
Differentiation Under Integral Sign with Constant Limits of Integration
Is there an error in this question or solution?