Advertisements
Advertisements
Question
Choose correct alternative for the following question.
To solve x + y = 3; 3x – 2y – 4 = 0 by determinant method find D.
Options
5
1
−5
−1
Solution
x + y = 3
3x – 2y – 4 = 0
∴ 3x – 2y = 4
`"D" = |(1, 1), (3, -2)| = 1 × (-2) – 1 × 3 = – 2 – 3 = – 5`
APPEARS IN
RELATED QUESTIONS
Choose correct alternative for the following question.
ax + by = c and mx + ny = d and an ≠ bm then these simultaneous equations have -
Find the value of the following determinant.
Find the value of the following determinant.
`|(5, -2), (-3, 1)|`
Find the value of the following determinant.
Select the correct alternative and write it.
What is the degree of the determinant `|[a ,b],[c,d]|`
Find the value of the determinant: `|(-3,8),(6,0)|`
`|(3, 5),(2, x)|` = 2 ∴ x = ______
For equations 5x + 3y + 11 = 0 and 2x + 4y = −10 find D.
Find the value of `|(5, 2),(0, -1)|`
For the equations y + 2x = 19 and 2x – 3y = − 3, find the value of D.
Using the determinants given below form two linear equations and solve them.
D = `|(5, 7),(2, -3)|`, Dy = `|(5, 4),(2, -10)|`
Form the simultaneous linear equations using the determinants
D = `|(4, -3),(2, 5)|`, Dx = `|(5, -3),(9, 5)|`, Dy = `|(4, 5),(2, 9)|`
Complete the activity to find the value of the determinant.
Activity: `|(2sqrt3, 9),(2, 3sqrt(3))| = 2sqrt(3) xx square - 9 xx square`
= `square` – 18
= `square`