Advertisements
Advertisements
Question
Compute:
`(243)^(2/5)÷(32)^(-2/5)`
Sum
Solution
`(243)^(2/5)÷(32)^(-2/5)`
`=(3xx3xx3xx3xx3)^(2/5)÷(2xx2xx2xx2xx2)^(-2/5)`
`=(3^5)^(2/5)÷(2^5)^(-2/5)`
`=3^(5xx2/5)÷2^(-2/5xx5)=3^2÷2^-2`
`=3^2xx1/2^-2=3^2xx2^(+2)`
`=3xx3xx2xx2=36`
shaalaa.com
More About Exponents
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Compute:
`(4^7)^2xx(4^-3)^4`
Compute:
`(2^-9÷2^-11)^3`
Compute:
`(12)^-2xx3^3`
Compute:
`(-5)^4xx(-5)^6÷(-5)^9`
Compute:
`(27)^(2/3)÷(81/16)^(-1/4)`
Evaluate:
`[(10^3)^0]^5`
Simplify:
`("a"^5"b"^2)/("a"^2"b"^-3`
Simplify:
`(2"x"^2"y"^-3)^-2`
Prove that:
`((x^a)/x^b)^(1/(ab))((x^b)/x^c)^(1/(bc))(x^c/x^a)^(1/(ca))=1`
Find the value of n, when:
`("a"^(2"n"-3)xx("a"^2)^("n"+1))/(("a"^4)^-3)=("a"^3)^3÷("a"^6)^-3`