Advertisements
Advertisements
प्रश्न
Compute:
`(243)^(2/5)÷(32)^(-2/5)`
योग
उत्तर
`(243)^(2/5)÷(32)^(-2/5)`
`=(3xx3xx3xx3xx3)^(2/5)÷(2xx2xx2xx2xx2)^(-2/5)`
`=(3^5)^(2/5)÷(2^5)^(-2/5)`
`=3^(5xx2/5)÷2^(-2/5xx5)=3^2÷2^-2`
`=3^2xx1/2^-2=3^2xx2^(+2)`
`=3xx3xx2xx2=36`
shaalaa.com
More About Exponents
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Compute:
`(-5)^4xx(-5)^6÷(-5)^9`
Compute:
`(-1/3)^4÷(-1/3)^8xx(-1/3)^5`
Compute:
`(625)^(-3/4)`
Compute:
`(27/64)^(-2/3)`
Compute:
`(125)^(-2/3)÷(8)^(2/3)`
Simplify:
`8^(4/3)+25^(3/2)-(1/27)^(-2/3)`
Evaluate:
`[(10^3)^0]^5`
Simplify:
`(2"x"^2"y"^-3)^-2`
Simplify and express as positive indice:
`("a"^(-2)"b")^(1/2)xx("a""b"^-3)^(1/3)`
Evaluate:
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`