Advertisements
Advertisements
प्रश्न
Evaluate:
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`
योग
उत्तर
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`
Step 1: Simplify `(x^2)^(3n+1)`
Using the rule (am)n = am⋅n:
(x2)3n+1 = x2(3n+1) = x6n+2.
Step 2: Multiply x5+n and x6n+2
Using the product rule (am⋅an = am+n):
x5+n⋅x6n+2 = x(5+n)+(6n+2) = x5+n+6n+2 = x7+7n.
Step 3: Divide by x7n−2
Using the quotient rule `a^m/a^n = a^(m-n)`:
`x^(7+7n)/x^(7n-2)`
`= x^((7+7n)−(7n−2))`
`= x^(7+7n−7n+2)`
`= x^(7+2)`
`= x^9`
shaalaa.com
More About Exponents
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Compute:
`(625)^(-3/4)`
Compute:
`(27/64)^(-2/3)`
Simplify:
`(2^-3-2^-4)(2^-3+2^-4)`
Evaluate:
`(-5)^0`
Evaluate:
`(8+4+2)^0`
Evaluate:
`[(10^3)^0]^5`
Simplify:
`5"z"^16÷15"z"^-11`
Simplify:
`(-2"x"^(2/3)"y"^(-3/2))^6`
Prove that:
`1/(1+"x"^("a"-"b"))+1/(1+"x"^("b"-"a"))=1`
Find the value of n, when:
`12^-5xx12^(2"n"+1)=12^13÷12^7`