Advertisements
Advertisements
Question
Evaluate:
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`
Solution
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`
Step 1: Simplify `(x^2)^(3n+1)`
Using the rule (am)n = am⋅n:
(x2)3n+1 = x2(3n+1) = x6n+2.
Step 2: Multiply x5+n and x6n+2
Using the product rule (am⋅an = am+n):
x5+n⋅x6n+2 = x(5+n)+(6n+2) = x5+n+6n+2 = x7+7n.
Step 3: Divide by x7n−2
Using the quotient rule `a^m/a^n = a^(m-n)`:
`x^(7+7n)/x^(7n-2)`
`= x^((7+7n)−(7n−2))`
`= x^(7+7n−7n+2)`
`= x^(7+2)`
`= x^9`
APPEARS IN
RELATED QUESTIONS
Compute:
`(2/3)^(-4)xx(27/8)^-2`
Compute:
`(56/28)^0÷(2/5)^3xx16/25`
Compute:
`(-3)^4-(root(4)(3))^0xx(-2)^5÷(64)^(2/3)`
Simplify:
`8^(4/3)+25^(3/2)-(1/27)^(-2/3)`
Evaluate:
`(7"x"^0)^2`
Simplify:
`(36"x"^2)^(1/2)`
Simplify:
`(2"x"^2"y"^-3)^-2`
Simplify:
`(27"x"^-3"y"^6)^(2/3)`
Simplify:
`(-2"x"^(2/3)"y"^(-3/2))^6`
Show that:
`(("x"^"a")/"x"^(-"b"))^("a"-"b").(("x"^"b")/"x"^(-"c"))^("b"-"c").(("x"^"c")/("x"^(-"a")))^("c"-"a")=1`