Advertisements
Advertisements
प्रश्न
Evaluate:
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`
उत्तर
`(x^(5+n)(x^2)^(3n+1))/x^(7n-2)`
Step 1: Simplify `(x^2)^(3n+1)`
Using the rule (am)n = am⋅n:
(x2)3n+1 = x2(3n+1) = x6n+2.
Step 2: Multiply x5+n and x6n+2
Using the product rule (am⋅an = am+n):
x5+n⋅x6n+2 = x(5+n)+(6n+2) = x5+n+6n+2 = x7+7n.
Step 3: Divide by x7n−2
Using the quotient rule `a^m/a^n = a^(m-n)`:
`x^(7+7n)/x^(7n-2)`
`= x^((7+7n)−(7n−2))`
`= x^(7+7n−7n+2)`
`= x^(7+2)`
`= x^9`
APPEARS IN
संबंधित प्रश्न
Compute:
`(12)^-2xx3^3`
Compute:
`9^0xx4^-1÷2^-4`
Compute:
`(625)^(-3/4)`
Simplify:
`[(64)^-2]^-3÷[{(-8)^2}^3]^2`
Evaluate:
`(-5)^0`
Evaluate:
`4"x"^0`
Evaluate:
`(7"x"^0)^2`
Evaluate:
`9^0+9^-1-9^-2+9^(1/2)-9^(-1/2)`
Simplify and express as positive indice:
`("a"^(-2)"b")^(1/2)xx("a""b"^-3)^(1/3)`
Find the value of n, when:
`12^-5xx12^(2"n"+1)=12^13÷12^7`