Advertisements
Advertisements
Question
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x – 4, g(x) = x2 and h(x) = 3x – 5
Solution
f(x) = x – 4, g(x) = x2 and h(x) = 3x – 5
(fog)oh = fo(goh)
L.H.S. = (fog)oh
fog = f(g(x)) = f(x2) = x2 – 4
(fog)oh = (fog)(3x – 5) = (3x – 5)2 – 4
= 9x2 – 30x + 25 – 4
= 9x2 – 30x + 21 …(1)
∴ R.H.S. = fo(goh)
(goh) = g(h(x)) = g(3x – 5) = (3x – 5)2
= 9x2 – 30x + 25
fo(goh) = f(9x2 – 30 x + 25)
= 9x2 – 30x + 25 – 4
= 9x2 – 30x + 21 …(2)
(1) = (2)
L.H.S. = R.H.S.
∴ (fog)oh = fo(goh)
It is proved.
APPEARS IN
RELATED QUESTIONS
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = x – 6, g(x) = x2
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(x + 6)/3`, g(x) = 3 – x
Find the value of k, such that fog = gof
f(x) = 2x – k, g(x) = 4x + 5
If f(x) = 2x – 1, g(x) = `(x + 1)/(2)`, show that fog = gof = x
Find k, if f(k) = 2k – 1 and fof(k) = 5
If f(x) = x2 – 1. Find fof
If f(x) = x2 – 1. Find fofof
If f : R → R and g : R → R are defined by f(x) = x5 and g(x) = x4 then check if f, g are one-one and fog is one-one?
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x – 1, g(x) = 3x + 1 and h(x) = x2
If f(x)= x2, g(x) = 3x and h(x) = x – 2 Prove that (fog)oh = fo(goh)