Advertisements
Advertisements
Question
Construct a 3 × 3 matrix whose elements are given by aij = |i – 2j|
Solution
aij = |i – 2j|
The general 3 × 3 matrices is
A = `[("a"_11, "a"_12, "a"_13),("a"_21, "a"_22, "a"_23),("a"_31, "a"_32, "a"_33)]`
a11 = |1 – 2(1)| = |1 – 2| = | – 1| = 1
a12 = |1 – 2(2)| = |1 – 4| = | – 3| = 3
a13 = |1 – 2(3)| = |1 – 6| = | – 5| = 5
a21 = |2 – 2(1)| = |2 – 2| = 0 = 0
a22 = |2 – 2(2)| = |2 – 4| = | – 2| = 2
a23 = |2 – 2(3)| = |2 – 6| = | – 4| = 4
a31 = |3 – 2(1)| = |3 – 2| = |1| = 1
a32 = |3 – 2(2)| = |3 – 4| = | – 1| = 1
a33 = |3 – 2(3)| = |3 – 6| = |– 3| = 3
The required matrix A = `[(1, 3, 5),(0, 2, 4),(1, 1, 3)]`
APPEARS IN
RELATED QUESTIONS
In the matrix A = `[(8, 9, 4, 3),(- 1, sqrt(7), sqrt(3)/2, 5),(1, 4, 3, 0),(6, 8, -11, 1)]`, write The order of the matrix
Find the values of x, y, z if `[(x), (y – z), (z + 3)] + [(y), (4), (3)] = [(4), (8), (16)]`
Find the order of the product matrix AB if
(i) | (ii) | (iii) | (iv) | (v) | |
Order of A | 3 × 3 | 4 × 3 | 4 × 2 | 4 × 5 | 1 × 1 |
Order of B | 3 × 3 | 3 × 2 | 2 × 2 | 5 × 1 | 1 × 3 |
If A = `[("a", "b"),("c", "d")]` and I = `[(1, 0),(0, 1)]` show that A2 – (a + d)A = (bc – ad)I2
If AT = `[(4, 5),(-1, 0),(2, 3)]` and B = `[(2, -1, 1),(7, 5, -2)]`, veriy the following
(A + B)T = AT + BT = BT + AT
Find the matrix A such that `[(2, -1),(1, 0),(-3, 4)]"A"^"T" = [(-1, -8, -10),(1, 2, -5),(9, 22, 15)]`
Choose the correct alternative:
If aij = (3i – 2j) and A = [aij]3 × 2 is
Choose the correct alternative:
What must be the matrix X, if `2"X" + [(1, 2),(3, 4)] = [(3, 8),(7, 2)]`?
Choose the correct alternative:
Which one of the following is not true about the matrix `[(1, 0, 0),(0, 0, 0),(0, 0, 5)]`?
Choose the correct alternative:
If A is skew-symmetric of order n and C is a column matrix of order n × 1, then CT AC is