Advertisements
Advertisements
Question
D and E are points on the sides AB and AC respectively of a ∆ABC such that DE || BC and divides ∆ABC into two parts, equal in area. Find
Sum
Solution
We have,
Area (∆ADE) = Area (trapezium BCED)
⇒ Area (∆ADE) + Area (∆ADE)
= Area (trapezium BCED) + Area (∆ADE)
⇒ 2 Area (∆ADE) = Area (∆ABC)
In ∆ADE and ∆ABC, we have
∠ADE = ∠B [∵ DE || BC ∴ ∠ADE = ∠B (Corresponding angles)] and, ∠A = ∠A [Common]
∴ ∆ADE ~ ∆ABC
`\Rightarrow \frac{Area\ (\Delta ADE)}{Area\ (\Delta ABC)}=(AD^2)/(AB^2)`
`(Area(DeltaADE))/(2Area(DeltaADE))=(AD^2)/(AB^2)`
`\Rightarrow \frac{1}{2}=( \frac{AD}{AB})^{2}\Rightarrow \frac{AD}{AB}=\frac{1}{\sqrt{2}}`
⇒ AB = √2 AD AB = √2 (AB – BD)
⇒ (√2 – 1) AB = √2 BD
`\Rightarrow \frac{BD}{AB}=\frac{\sqrt{2}-1}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}`
shaalaa.com
Is there an error in this question or solution?