Advertisements
Advertisements
Question
Decompose into Partial Fractions:
`(6x^2 - 14x - 27)/((x + 2)(x - 3)^2)`
Solution
`(6x^2 - 14x - 27)/((x + 2)(x - 3)^2) = "A"/(x + 2) + "B"/(x - 3) + "C"/(x - 3)^2`
6x2 - 14x - 27 = A(x - 3)2 + B(x + 2)(x - 3) + C(x + 2) ....(1)
Substituting x = 3 in (1) we get,
∴ 6(3)2 - 14(3) - 27 = A(3 - 3)2 + B(3 + 2)(3 - 3) + C(3 + 2)
⇒ 54 - 42 - 27 = A(0) + B(5)(0) + C(5)
⇒ - 15 = 5C
⇒ C = - 3
Substituting x = -2 in (1) we get,
∴ 6(-2)2 - 14(-2) - 27 = A(-2 - 3)2 + B(-2 + 2)(-2 - 3) + C(- 2 + 2)
⇒ 24 + 28 - 27 = A(25) + B(0)(-5) + C(0)
⇒ 24 + 28 - 27 = A(25)
⇒ 25 = A(25)
⇒ A = 1
Substituting x = 0 in (1) we get,
∴ 6(0)2 - 14(0) - 27 = A(0 - 3)2 + B(0 + 2)(0 - 3) + C(0 + 2)
⇒ - 27 = A(-3)2 + B(2)(-3) + C(2)
⇒ - 27 = 9A - 6B + 2C
⇒ - 27 = 9(1) - 6B + 2(-3) ....[∵ A = 1, C = - 3]
⇒ - 27 = 9 - 6B - 6
⇒ - 27 = 3 - 6B
⇒ 6B = 3 + 27
⇒ 6B = 30
⇒ B = 5
∴ `(6x^2 - 14x - 27)/((x + 2)(x - 3)^2) = 1/(x + 2) + 5/(x - 3) - 3/(x - 3)^2`
APPEARS IN
RELATED QUESTIONS
Resolve into partial fraction for the following:
`(3x + 7)/(x^2 - 3x + 2)`
Resolve into partial fraction for the following:
`1/((x - 1)(x + 2)^2)`
Resolve into partial fraction for the following:
`(2x^2 - 5x - 7)/(x - 2)^3`
Resolve into a partial fraction for the following:
`(x^2 - 6x + 2)/(x^2 (x + 2))`
Resolve into a partial fraction for the following:
`(x + 2)/((x - 1)(x + 3)^2)`
Resolve into a partial fraction for the following:
`1/((x^2 + 4)(x + 1))`
Resolve into Partial Fractions:
`(5x + 7)/((x-1)(x+3))`
Resolve into Partial Fractions:
`(x - 4)/(x^2 - 3x + 2)`
Decompose into Partial Fractions:
`(5x^2 - 8x + 5)/((x - 2)(x^2 - x + 1))`
If `(kx)/((x + 4)(2x - 1)) = 4/(x + 4) + 1/(2x - 1)` then k is equal to: