Advertisements
Advertisements
Question
Decompose into Partial Fractions:
`(5x^2 - 8x + 5)/((x - 2)(x^2 - x + 1))`
Solution
`(5x^2 - 8x + 5)/((x - 2)(x^2 - x + 1)) = "A"/(x - 2) + ("B"x + "C")/(x^2 - x + 1)`
⇒ 5x2 - 8x + 5 = A(x2 - x + 1) + (Bx + C)(x - 2) ...(1)
Substituting x = 2 in (1) we get,
⇒ 5(2)2 - 8(2) + 5 = A((2)2 - (2) + 1) + (B(2) + C)(2 - 2)
⇒ 20 - 16 + 5 = A(3) + (2B + C)(0)
⇒ 9 = A(3)
⇒ A = `9/3`
⇒ A = 3
Equating the co-efficient of x2 in (1) we get,
⇒ 5 = A + B
⇒ 5 = 3 + B
⇒ B = 2 ...[∵ A = 3]
Substituting x = 0 in (1) we get,
5(0)2 - 8(0) + 5 = A(02 - 0 + 1) + (B(0) + C)(0 - 2)
⇒ 5 = A - 2C
⇒ 5 = 3 - 2C
⇒ 2 = - 2C
⇒ C = - 1
∴ `(5x^2 - 8x + 5)/((x - 2)(x^2 - x + 1)) = 3/(x - 2) + (2x + 1)/(x^2 - x + 1)`
APPEARS IN
RELATED QUESTIONS
Resolve into partial fraction for the following:
`(3x + 7)/(x^2 - 3x + 2)`
Resolve into partial fraction for the following:
`(4x + 1)/((x - 2)(x + 1))`
Resolve into partial fraction for the following:
`1/((x - 1)(x + 2)^2)`
Resolve into partial fraction for the following:
`(x - 2)/((x + 2)(x - 1)^2)`
Resolve into partial fraction for the following:
`(x^2 - 3)/((x + 2)(x^2 + 1))`
Resolve into a partial fraction for the following:
`(x + 2)/((x - 1)(x + 3)^2)`
Resolve into a partial fraction for the following:
`1/((x^2 + 4)(x + 1))`
Resolve into Partial Fractions:
`(5x + 7)/((x-1)(x+3))`
Decompose into Partial Fractions:
`(6x^2 - 14x - 27)/((x + 2)(x - 3)^2)`
If `(kx)/((x + 4)(2x - 1)) = 4/(x + 4) + 1/(2x - 1)` then k is equal to: