Advertisements
Advertisements
Question
Differentiate `tan^-1[(sqrt(1+"x"^2)-sqrt(1-"x"^2))/(sqrt(1+"x"^2) + sqrt(1-"x"^2))]`with respect to cos−1x2.
Solution
Let u = tan−1`[(sqrt(1+"x"^2) - sqrt(1-"x"^2))/(sqrt(1+"x"^2)+ sqrt(1-"x"^2))]` and v = cos-1 x2
Putting x2 = cos θ in u
`"u" = tan^-1 [(sqrt(1+costheta) - sqrt(1-costheta))/(sqrt(1-costheta) + sqrt(1-costheta))]`
`⇒"u" = tan^-1 [(sqrt(2+cos^2 theta/2) -sqrt(2 sin^2 theta/2))/(sqrt(2 cos^2 theta/2) + sqrt(2 sin^2 theta/2))]`
`⇒"u" = tan^-1[(cos theta/2-sin theta/2)/(cos theta/2 + sin theta/2)]`
`⇒ "u" = tan^-1[(1-tan theta/2)/(1+ tan theta/2)]`
`⇒ "u" = tan^-1[(1-tan theta/2)/(1+ tan theta/2)]`
`⇒ "u" = tan^-1[tan(pi/4 - theta/2)]`
`⇒ "u" = pi/4 - theta/2`
`⇒ "u"=pi/4 -(cos^-1"x"^2)/2`
`⇒ "du"/"dx"= 0 - 1/2 ((-1)/sqrt(1-"x"^4)(2"x"))`
`⇒ "du"/"dx" = "x"/sqrt(1-"x"^4)`
Also, v = cos-1x2
`"du"/"dv" = -1/sqrt(1-"x"^4) (2"x") = (-2"x")/sqrt(1-"x"^4)`
`"du"/"dv" = ("du"/"dz")/("dv"/"dz")`
`= ("x"/sqrt(1-"x"^4))/((-2"x")/sqrt(1-"x"^4))`
`= (-1)/2`