Advertisements
Advertisements
Question
Differentiate the following with respect to x.
(sin x)tan x
Solution
Let y = (sin x)tan x
Taking logarithm on both sides we get,
log y = tan x log(sin x)
Differentiating with respect to x,
`1/y "dy"/"dx" = tan x "d"/"dx"` (log (sin x)) + log (sin x) `"d"/"dx"` (tan x)
= tan x `1/(sin x)`(cos x) + log (sin x) sec2x
`1/y "dy"/"dx" = (sin x)/(cos x) xx (cos x)/(sin x)` + log (sin x)(sec2x)
= 1 + log (sin x)(sec2x)
`"dy"/"dx"` = y[1 + sec2x log (sin x)]
= (sin x)tan x[1 + sec2x log (sin x)]
APPEARS IN
RELATED QUESTIONS
Differentiate the following with respect to x.
`(x^2 + x + 1)/(x^2 - x + 1)`
Differentiate the following with respect to x.
`e^x/(1 + e^x)`
Differentiate the following with respect to x.
x sin x
Differentiate the following with respect to x.
cos3 x
Differentiate the following with respect to x.
`sqrt(1 + x^2)`
Differentiate the following with respect to x.
sin(x2)
Differentiate the following with respect to x.
xsin x
Differentiate the following with respect to x.
(sin x)x
If y = 500e7x + 600e-7x, then show that y2 – 49y = 0.
If y = tan x, then prove that y2 - 2yy1 = 0.