Advertisements
Advertisements
Question
Draw the graph of the lines represented by the equations 3x - 2y = 4 and x + y = 3 on the same graph. Find the coordinates of the point where they intersect. State, whether the lines are perpendicular to each other.
Solution
We have
3x - 2y = 4
⇒ -2y = 4 - 3x
⇒ 2y = 3x - 4
⇒ y = `(3x - 4)/(2)`
When x = -2
⇒ y = `(-6 - 4)/(2)` = -5
When x = 0
⇒ y = `-(4)/(2)` = -2
When x = 2
⇒ y = `(6 - 4)/(2)` = 1
x | -2 | -1 | 0 | 1 | 2 |
y | -5 | -3.5 | -2 | -0.5 | 1 |
Thus ordered pairs of 3x - 2y = 4 are {(-2, -5), (-1, -3.5). (0, -2), (1, -0.5), (2, 1)}.
Also,
x + y = 3
⇒ y = 3 - x
When x = -2
⇒ y = 4 + 2
= 6
When x = 0
⇒ y = 3
When x = 2
⇒ y = 4 - 2
= 2
x | -2 | -1 | 0 | 1 | 2 |
y | 5 | 4 | 3 | 2 | 1 |
Thus ordered pairs of x + y = 3 are {(-2, 5), (-1, 4), (0, 3), (1, 2), (2, 1)}.
The point of intersection is (2, 1).
APPEARS IN
RELATED QUESTIONS
Draw the graph for the linear equation given below:
2x - 7 = 0
Draw the graph for the linear equation given below:
x + 5y + 2 = 0
For the linear equation, given above, draw the graph and then use the graph drawn (in the following case) to find the area of a triangle enclosed by the graph and the co-ordinates axes:
7 - 3 (1 - y) = -5 + 2x
Draw the graph of equation x + 2y - 3 = 0. From the graph, find:
(i) x1, the value of x, when y = 3
(ii) x2, the value of x, when y = - 2.
Use the graphical method to show that the straight lines given by the equations x + y = 2, x - 2y = 5 and `x/(3) + y = 0` pass through the same point.
Draw a graph of each of the following equations: 3x - 2y = 6
Draw a graph of the equation 3x - y = 7. From the graph find the value of:
(i) y, when x = 1
(ii) x, when y = 8
Draw a graph for each of the following equations and find the coordinates of the points where the line drawn meets the x-axis and y-axis: 2x + 3y = 12
Draw a graph of the equation 5x - 3y = 1. From the graph find the value of:
(i) x, when y = 8
(ii) y, when x = 2
Draw the graph of the lines represented by the equations 2x - y = 8 and 4x + 3y = 6 on the same graph. Find the co-ordinates of the point where they intersect.