English

दर्शाइए कि किसी पूर्णांक q के लिए, किसी विषम पूर्णांक का वर्ग 4q+1 के रूप का होता है। - Mathematics (गणित)

Advertisements
Advertisements

Question

दर्शाइए कि किसी पूर्णांक q के लिए, किसी विषम पूर्णांक का वर्ग 4q+1 के रूप का होता है।

Sum

Solution

यूक्लिड के विभाजन एल्गोरिथ्म द्वारा, हमारे पास a = bm + r है, जहां 0 ≤ r < b … (i)

समीकरण (i) में b = 4 रखने पर, हमें मिलता है।

a = 4m + r, जहाँ 0 ≤ r < 4, यानी, r = 0, 1, 2, 3

यदि r = 0 `\implies` a = 4m, 4m, 2 से विभाज्य है `\implies` 4m सम है।

यदि r = 1 `\implies` a = 4m + 1, (4m + 1) 2 से विभाज्य नहीं है।

यदि r = 2 `\implies` a = 4m + 2 = 2(2m + 1), 2(2 m + 1) 2 से विभाज्य है `\implies` 2(2m + 1) सम है।

यदि r = 3 `\implies` a = 4m + 3, (4m + 3) 2 से विभाज्य नहीं है।

तो, किसी भी सकारात्मक पूर्णांक m के लिए, (4m + 1) और (4m + 3) विषम पूर्णांक हैं।

अब, a2 = (4m + 1)2 = 16m2 + 1 + 8m ...[∵ (a + b)2 = a2 + 2ab + b2]

= 4(4m2 + 2m) + 1

= 4q + 1

यह एक वर्ग है जो 4q + 1 के रूप का है, जहाँ q = (4m2 + 2m) एक पूर्णांक है।

और a2 = (4m + 3)2 = 16m2 + 9 + 24m ...[∵ (a + b)2 = a2 + 2ab + b2]

= 4(4m2 + 6m + 2) + 1

= 4q + 1

यह एक वर्ग है जो 4q + 1 के रूप का है, जहाँ q = (4m2 + 6m + 2) एक पूर्णांक है।

अतः किसी पूर्णांक q के लिए, किसी विषम पूर्णांक का वर्ग 4q + 1 के रूप का होता है।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  Is there an error in this question or solution?
Chapter 1: वास्तविक संख्याएँ - प्रश्नावली 1.3 [Page 6]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 1 वास्तविक संख्याएँ
प्रश्नावली 1.3 | Q 5.. | Page 6

RELATED QUESTIONS

दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है, जहाँ q कोई पूर्णांक है।


किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?


यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।

[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]


जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए, संख्या 6n अंक 0 पर समाप्त हो सकती है।


“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।


एक धनात्मक पूर्णांक 3q + 1 के रूप का है, जहाँ q एक प्राकृत संख्या है। क्या इसके वर्ग को 3m + 1 से भिन्न रूप में, अर्थात् 3m या 3m + 2 के रूप में लिख सकते हैं, जहाँ m कोई पूर्णांक है? अपने उत्तर का औचित्य दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, या तो 4q या 4q + 1 के रूप का होता है।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।


441, 567 और 693 का HCF ज्ञात करने के लिए, यूक्लिड की विभाजन एल्गोरिथ्म का प्रयोग कीजिए।


सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×