English

यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।

Sum

Solution

हम जानते हैं कि किसी भी विषम सकारात्मक पूर्णांक n को फॉर्म 4q + 1 या 4q + 3 में लिखा जा सकता है।

जब n = 4q + 1,

तब n2 – 1 = (4q + 1)2 – 1

= 16q2 + 8q + 1 – 1

= 8q(2q + 1) 8 द्वारा विभाज्य है।

जब n = 4q + 3

तब n2 – 1 = (4q + 3)2 – 1

= 16q2 + 24q + 9 – 1

= 8(2q2 + 3q + 1) 8 द्वारा विभाज्य है।

तो, उपरोक्त समीकरणों से, यह स्पष्ट है कि

यदि n एक विषम सकारात्मक पूर्णांक है।

n2 – 1, 8 से विभाज्य है।

इसलिए साबित हुआ।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  Is there an error in this question or solution?
Chapter 1: वास्तविक संख्याएँ - प्रश्नावली 1.3 [Page 6]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 1 वास्तविक संख्याएँ
प्रश्नावली 1.3 | Q 6. | Page 6

RELATED QUESTIONS

दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1 या 6q + 3 या 6q + 5 के रूप का होता है, जहाँ q कोई पूर्णांक है।


किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है। दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है। उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते हैं?


यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।

[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]


यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।


जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए, संख्या 6n अंक 0 पर समाप्त हो सकती है।


“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, 5q + 2 या 5q + 3 के रूप का नहीं हो सकता।


दर्शाइए कि 6q + r के रूप के एक धनात्मक पूर्णांक का घन भी, जहाँ q एक पूर्णांक है तथा r = 0, 1, 2, 3, 4, 5 हैं, 6m + r के रूप का होता है। जहाँ m एक पूर्णांक है।


सिद्ध कीजिए कि n, n + 2 और n + 4 में से एक और केवल एक ही 3 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।


सिद्ध कीजिए कि किसी धनात्मक पूर्णांक n के लिए संख्या n3 − n, 6 से विभाज्य है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×