English

सिद्ध कीजिए कि n, n + 2 और n + 4 में से एक और केवल एक ही 3 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है। - Mathematics (गणित)

Advertisements
Advertisements

Question

सिद्ध कीजिए कि n, n + 2 और n + 4 में से एक और केवल एक ही 3 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।

Sum

Solution

n को 3 से विभाजित करने पर, मान लीजिए q भागफल है और r शेषफल है।

फिर, यूक्लिड के विभाजन एल्गोरिथ्म द्वारा,

n = 3q + r, जहां 0 ≤ r < 3

`\implies` n = 3q + r, जहां r = 0, 1, 2

`\implies` n = 3q या n = 3q + 1 या n = 3q + 2

केस I: यदि n = 3q जो 3 से विभाज्य है।

लेकिन n + 2 और n + 4, 3 से विभाज्य नहीं हैं।

तो, इस मामले में, केवल n को 3 से विभाजित किया गया है।

केस II: यदि n = 3q + 1,

फिर (n + 2) = 3q + 3 = 3(q + 1),

जो 3 से विभाज्य है लेकिन n और n + 4 3 से विभाज्य नहीं है।

तो, इस मामले में, केवल (n + 2) 3 से विभाज्य है।

केस III: यदि n = 3q + 2,

फिर (n + 4) = 3q + 6 = 3(q + 2),

जो 3 से विभाज्य है लेकिन n और (n + 2) 3 से विभाज्य नहीं हैं।

तो, इस मामले में, केवल (n + 4) 3 से विभाज्य है।

अतः n, (n + 2) और (n + 4) में से केवल एक ही 3 से विभाज्य है।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  Is there an error in this question or solution?
Chapter 1: वास्तविक संख्याएँ - प्रश्नावली 1.4 [Page 8]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 1 वास्तविक संख्याएँ
प्रश्नावली 1.4 | Q 2. | Page 8

RELATED QUESTIONS

यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है।


जाँच कीजिए कि क्या किसी प्राकृत संख्या n के लिए, संख्या 6n अंक 0 पर समाप्त हो सकती है।


“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।


लिखिए कि क्या किसी धनात्मक पूर्णांक का वर्ग 3m + 2 के रूप का हो सकता है, जहाँ m एक प्राकृत संख्या है। अपने उत्तर का औचित्य दीजिए।


एक धनात्मक पूर्णांक 3q + 1 के रूप का है, जहाँ q एक प्राकृत संख्या है। क्या इसके वर्ग को 3m + 1 से भिन्न रूप में, अर्थात् 3m या 3m + 2 के रूप में लिख सकते हैं, जहाँ m कोई पूर्णांक है? अपने उत्तर का औचित्य दीजिए।


दोनों ही संख्याएँ 525 और 3000 केवल 3, 5, 15, 25 और 75 से विभाज्य हैं। HCF (525, 3000) क्या है? अपने उत्तर का औचित्य दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, या तो 4q या 4q + 1 के रूप का होता है।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए, 6m + 2 या 6m + 5 के रूप का नहीं हो सकता।


यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।


दर्शाइए कि n, n + 4, n + 8, n + 12 और n + 16 में से एक और केवल एक ही 5 से विभाज्य है, जहाँ n कोई धनात्मक पूर्णांक है।

[संकेत : किसी भी धनात्मक पूर्णांक को 5q, 5q + 1, 5q + 2, 5q + 3, 5q + 4 के रूप में लिखा जा सकता है।]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×