English

दोनों ही संख्याएँ 525 और 3000 केवल 3, 5, 15, 25 और 75 से विभाज्य हैं। HCF (525, 3000) क्या है? अपने उत्तर का औचित्य दीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

दोनों ही संख्याएँ 525 और 3000 केवल 3, 5, 15, 25 और 75 से विभाज्य हैं। HCF (525, 3000) क्या है? अपने उत्तर का औचित्य दीजिए।

Sum

Solution

यूक्लिड की प्रमेयिका द्वारा,

3000 = 525 × 5 + 375 .......[∵ लाभांश = भाजक x भागफल + शेषफल]

525 = 375 × 1 + 150 

375 = 150 × 2 + 75 

150 = 75 × 2 + 0

∴ HCF (525, 3000) = 75

संख्याएँ 3, 5,15, 25 और 75, संख्या 525 और 3000 को विभाजित करती हैं, जिसका अर्थ है कि ये सभी 525 और 3000 के सामान्य गुणनखंड हैं।

इनमें से उच्चतम समापवर्तक 75 है।

shaalaa.com
यूक्लिड विभाजन प्रमेयिका
  Is there an error in this question or solution?
Chapter 1: वास्तविक संख्याएँ - प्रश्नावली 1.2 [Page 4]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 10
Chapter 1 वास्तविक संख्याएँ
प्रश्नावली 1.2 | Q 6. | Page 4

RELATED QUESTIONS

यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है।

[संकेत: यह मान लीजिए x कोई धनात्मक पूर्णांक है। तब, यह 3q, 3q + 1 या 3q + 2 के रूप में लिखा जा सकता है। इनमें से प्रत्येक का वर्ग कीजिए और दर्शाइए कि इन वर्गों को 3m या 3m + 1 के रूप में लिखा जा सकता है।]


क्या प्रत्येक धनात्मक पूर्णांक 4q + 2 के रूप का हो सकता है, जहाँ q एक पूर्णाक है? अपने उत्तर का औचित्य दीजिए।


“दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 2 से विभाज्य है। " क्या यह कथन सत्य है या असत्य? कारण दीजिए।


"तीन क्रमागत धनात्मक पूर्णांकों का गुणनफल 6 से विभाज्य है।" क्या यह कथन सत्य है या असत्य? अपने उत्तर का औचित्य दीजिए।


एक धनात्मक पूर्णांक 3q + 1 के रूप का है, जहाँ q एक प्राकृत संख्या है। क्या इसके वर्ग को 3m + 1 से भिन्न रूप में, अर्थात् 3m या 3m + 2 के रूप में लिख सकते हैं, जहाँ m कोई पूर्णांक है? अपने उत्तर का औचित्य दीजिए।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, या तो 4q या 4q + 1 के रूप का होता है।


दर्शाइए कि किसी धनात्मक पूर्णांक का घन, किसी पूर्णांक m के लिए, 4m, 4m + 1 या 4m + 3 के रूप का होता है।


दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक q के लिए, 5q + 2 या 5q + 3 के रूप का नहीं हो सकता।


यदि n एक विषम पूर्णांक है, तो दर्शाइए कि n2 − 1, 8 से विभाज्य है।


सिद्ध कीजिए कि किन्हीं तीन क्रमागत धनात्मक पूर्णांकों में से एक पूर्णांक 3 से अवश्य ही विभाज्य होना चाहिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×