Advertisements
Advertisements
Question
एक आयत की लंबाई उसकी चौड़ाई का तीन गुना है। यदि आयत का न्यूनतम परिमाप 160 सेमी है, तो
Options
चौड़ाई > 20 सेमी
लंबाई < 20 सेमी
चौड़ाई x ≥ 20 सेमी
लंबाई ≤ 20 सेमी
Solution
चौड़ाई x ≥ 20 सेमी
स्पष्टीकरण:
चौड़ाई x ≥ 20 सेमी यह सही विकल्प है। क्योंकि यदि चौड़ाई x सेमी है तो 2(3x + x) ≥ 160 ⇒ x ≥ 20
APPEARS IN
RELATED QUESTIONS
दी गई असमिका का हल ज्ञात कीजिए तथा संख्या रेखा पर आलेखित कीजिए।
3x - 2 < 2x +1
असमिका 3x – 5 < x + 7 को हल कीजिए जहाँ x एक प्राकृतिक संख्या है।
असमिका 3x – 5 < x + 7 को हल कीजिए जहाँ x एक पूर्ण संख्या है।
`(x - 2)/(x + 5) > 2` को हल कीजिए।
1 ≤ |x – 2| ≤ 3 को हल कीजिए।
किसी उत्पाद के लागत फलन एवं राजस्व फलन क्रमशः C(x) = 20x + 4000 एवं R(x) = 60x + 2000 हैं जहाँ x निर्मित की गईं एवं बेची गईं वस्तुओं की संख्या है। कुछ लाभ अर्जित करने के लिए कितनी वस्तुएँ अवश्य बेची जानी चाहिए?
निम्नलिखित असमिका निकाय को हल कीजिए:
`x/(2x + 1) ≥ 1/4, (6x)/(4x - 1) < 1/2`
यदि `|x - 2|/(x - 2) ≥ 0`, तो
x चर वाले असमिका निकाय के हल को नीचे प्रदर्शित संख्या रेखाओं पर निरूपित किया गया है, तो
यदि x ≥ –3, तो x + 5 ______ 2
यदि `1/(x - 2) < 0`, तो x ______ 2
यदि a < b और c < 0, तो `a/c` ______ `b/c`
यदि |3x - 7| > 2, तो x ______ `5/3` या x ______ 3
निम्नलिखित असमिका को x के लिए हल कीजिए:
`1/(|x| - 3) ≤ 1/2`
निम्नलिखित असमिका को x के लिए हल कीजिए:
`-5 ≤ (2 - 3x)/4 ≤ 9`
कैसेट बनाने वाली किसी कंपनी के लागत एवं राजस्व फलन क्रमश: C(x) = 26,000 + 30x एवं R(x) = 43x है, जहाँ x एक सप्ताह में निर्मित किए गए एवं बेचे गए कैसेटों की संख्या है। कुछ लाभ अर्जित करने के लिए कंपनी द्वारा कितनी कैसेट अवश्य बेचे जाने चाहिए?
9% अम्ल वाले किसी विलयन को हल्का करने के लिए उसमें 3% अम्ल वाला विलयन मिलाया जाता है। इस प्रकार प्राप्त मिश्रण में 5% से अधिक एवं 7% से कम अम्ल होना चाहिए। 9% वाले विलयन की मात्रा यदि 460 लीटर है तो ज्ञात कीजिए कि 3% वाले विलयन की कितनी मात्रा मिलाने की आवश्यकता है?
किसी त्रिभुज की सबसे बड़ी भुजा सबसे छोटी भुजा से दुगनी है एवं तीसरी भुजा सबसे छोटी भुजा से 2 सेमी अधिक है। यदि त्रिभुज का परिमाप 166 सेमी से अधिक है तो सबसे छोटी भुजा की न्यूनतम लंबाई ज्ञात कीजिए।
विश्व का सबसे गहरा छेद करते हुए ज्ञात हुआ कि पृथ्वी की सतह से x किमी नीचे का तापमान T डिग्री सेल्सियस में T = 30 + 25(x – 3), 3 ≤ x ≤ 15 होता है। ज्ञात कीजिए कि कितनी गहराई पर तापमान 155°C एवं 205°C के मध्य होगा?
दिया हुआ है कि x, y, b वास्तविक संख्याएँ हैं और x < y, b < 0, तब
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि xy > 0, तो x < 0 और y < 0
बताइए निम्नलिखित कथन सत्य है या असत्य है?
यदि x < −5 और x < −2, तो x ∈ (−∞, −5)