English

एक सोडियम परमाणु का आमाप लगभग 2.5 AA. मानते हुए उसके माध्य द्रव्यमान घनत्व का अनुमान लगाइए। - Physics (भौतिक विज्ञान)

Advertisements
Advertisements

Question

एक सोडियम परमाणु का आमाप लगभग 2.5 Å मानते हुए उसके माध्य द्रव्यमान घनत्व का अनुमान लगाइए। (सोडियम के परमाण्वीय द्रव्यमान तथा आवोगाद्रो संख्या के ज्ञात मान का प्रयोग कीजिए)। इस घनत्व की क्रिस्टलीय प्रावस्था में सोडियम के घनत्व 970 kg m-3 के साथ तुलना कीजिए। क्या इन दोनों घनत्वों के परिमाण की कोटि समान है? यदि हाँ, तो क्यों?

Numerical

Solution

सोडियम परमाणु का आमाप (त्रिज्या) = 2.5 Å = 2.5 × 10-10 m
सोडियम का ग्राम परमाणु भार = 23 g = 23 × 10-3 kg
एक ग्राम परमाणु में परमाणुओं की संख्या 6.023 × 1023 होती है।

∴ सोडियम के एक परमाणु का द्रव्यमान = `(23 xx 10^-3  "kg")/(6.023 xx 10^23)`

= 3.82 × 10-26 kg

एक परमाणु का आयतन = `4/3pi"r"^3`

= `4/3 xx 3.14 xx (2.5 xx 10^-10 "m"^3`)`

= `65.42 xx 10^-30  "m"^3`

सोडियम परमाणु का द्रव्यमान घनत्व = `"एक परमाणु का द्रव्यमान"/"एक परमाणु का आयतन"`

= `(3.82 xx 10^-26  "kg")/(65.42 xx 10^-30  "m"^3)`

= 0.584 × 103 kg/m

= 584 kg/m3

क्रिस्टलीय अवस्था में सोडियम का घनत्व = 970 kg/m3

= 9.7 × 102 kg/m3

स्पष्ट है कि परमाणु का द्रव्यमान घनत्व तथा ठोस प्रावस्था में सोडियम का घनत्व दोनों 103 की कोटि के हैं। इसका अर्थ यह है कि ठोस प्रावस्था में परमाणुओं के बीच खाली स्थान नगण्य होता है, अर्थात् ठोस प्रावस्था में परमाणु दृढ़तापूर्वक संकुलित होते हैं।

shaalaa.com
द्रव्यमान का मापन
  Is there an error in this question or solution?
Chapter 2: मात्रक और मापन - अभ्यास [Page 38]

APPEARS IN

NCERT Physics [Hindi] Class 11
Chapter 2 मात्रक और मापन
अभ्यास | Q 2.27 | Page 38

RELATED QUESTIONS

जिस प्रकार विज्ञान में परिशुद्ध मापन आवश्यक है, उसी प्रकार अल्पविकसित विचारों तथा सामान्य प्रेक्षणों को उपयोग करने वाली राशियों के स्थूल आकलन कर सकना भी उतना ही महत्त्वपूर्ण है। उस उपाय को सोचिए जिनके द्वारा आप निम्नलिखित का अनुमान लगा सकते हैं-(जहाँ अनुमान लगाना कठिन है वहाँ राशि की उपरिसीमा पता लगाने का प्रयास कीजिए)

आपकी कक्षा के कमरे में वायु के अणुओं की संख्या।


नाभिकीय पैमाने पर लंबाई का सुविधाजनक मात्रक फर्मी है: (1f = 10-15 m)। नाभिकीय आमाप लगभग निम्नलिखित आनुभविक संबंध का पालन करते हैं:

r =r0 A1/3 

जहाँ r नाभिक की त्रिज्या, A इसकी द्रव्यमान संख्या और r0, कोई स्थिरांक है जो लगभग 1.2 f के बराबर है। यह प्रदर्शित कीजिए कि इस नियम का अर्थ है कि विभिन्न नाभिकों के लिए नाभिकीय द्रव्यमान घनत्व लगभग स्थिर है। सोडियम नाभिक के द्रव्यमान घनत्व का आकलन कीजिए। प्रश्न 2.27 में ज्ञात किए गए सोडियम परमाणु के माध्य द्रव्यमान घनत्व के साथ इसकी तुलना कीजिए।


इस शताब्दी के एक महान भौतिकविद् (पी. ए. एम. डिरैक) प्रकृति के मूल स्थिरांकों (नियतांकों) के आंकिक मानों के साथ क्रीड़ा में आनन्द लेते थे। इससे उन्होंने एक बहुत ही रोचक प्रेक्षण किया। परमाणवीय भौतिकी के मूल नियतांकों (जैसे इलेक्ट्रॉन का द्रव्यमान, प्रोटॉन का द्रव्यमान तथा गुरुत्वीय नियतांक G) से उन्हें पता लगा कि वे एक ऐसी संख्या पर पहुँच गए हैं जिसकी विमा समय की विमा है। साथ ही, यह एक बहुत ही बड़ी संख्या थी और इसका परिमाण विश्व की वर्तमान आकलित आयु (~1500 करोड़ वर्ष) के करीब है। इस पुस्तक में दी गई मूल नियतांकों की सारणी के आधार पर यह देखने का प्रयास कीजिए कि क्या आप भी यह संख्या (या और कोई अन्य रोचक संख्या जिसे आप सोच सकते हैं) बना, सकते हैं? यदि विश्व की आयु तथा इस संख्या में समानता महत्त्वपूर्ण है तो मूल नियतांकों की स्थिरता किस प्रकार प्रभावित होगी?


जिस प्रकार विज्ञान में परिशुद्ध मापन आवश्यक है, उसी प्रकार अल्पविकसित विचारों तथा सामान्य प्रेक्षणों को उपयोग करने वाली राशियों के स्थूल आकलन कर सकना भी उतना ही महत्त्वपूर्ण है। उस उपाय को सोचिए जिनके द्वारा आप निम्नलिखित का अनुमान लगा सकते हैं-(जहाँ अनुमान लगाना कठिन है वहाँ राशि की उपरिसीमा पता लगाने का प्रयास कीजिए)।

मानसून की अवधि में भारत के ऊपर वर्षाधारी मेघों का कुल द्रव्यमान।


जिस प्रकार विज्ञान में परिशुद्ध मापन आवश्यक है, उसी प्रकार अल्पविकसित विचारों तथा सामान्य प्रेक्षणों को उपयोग करने वाली राशियों के स्थूल आकलन कर सकना भी उतना ही महत्त्वपूर्ण है। उस उपाय को सोचिए जिनके द्वारा आप निम्नलिखित का अनुमान लगा सकते हैं-(जहाँ अनुमान लगाना कठिन है वहाँ राशि की उपरिसीमा पता लगाने का प्रयास कीजिए)।

किसी हाथी का द्रव्यमान।


जिस प्रकार विज्ञान में परिशुद्ध मापन आवश्यक है, उसी प्रकार अल्पविकसित विचारों तथा सामान्य प्रेक्षणों को उपयोग करने वाली राशियों के स्थूल आकलन कर सकना भी उतना ही महत्त्वपूर्ण है। उस उपाय को सोचिए जिनके द्वारा आप निम्नलिखित का अनुमान लगा सकते हैं-(जहाँ अनुमान लगाना कठिन है वहाँ राशि की उपरिसीमा पता लगाने का प्रयास कीजिए)।

किसी तूफान की अवधि में वायु की चाल।


जिस प्रकार विज्ञान में परिशुद्ध मापन आवश्यक है, उसी प्रकार अल्पविकसित विचारों तथा सामान्य प्रेक्षणों को उपयोग करने वाली राशियों के स्थूल आकलन कर सकना भी उतना ही महत्त्वपूर्ण है। उस उपाय को सोचिए जिनके द्वारा आप निम्नलिखित का अनुमान लगा सकते हैं-(जहाँ अनुमान लगाना कठिन है वहाँ राशि की उपरिसीमा पता लगाने का प्रयास कीजिए)।

आपके सिर के बालों की संख्या।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×