Advertisements
Advertisements
Question
Evaluate `int_0^1 x^5 sin ^-1 x dx`and find the value of β `(9/2,1/2)`
Solution
`I= int_0^1 x^5 sin^-1 x dx`
Put `sin^-1 x= t` ∴ `x= sin t dx= cost dt`
When x = 0, t = 0 When` x=1, t=pi/2`
`I= int_0^pi/2 sin^5t.t. cos t dt = int_0^pi/2 t (sin^5t. cos t )dt`
Integrating by parts,
`1I=[t. sin^6 x/6]^(pi/2)-int_0^(pi/2) sin^6 x/6. 1.dt `
`I=(pi/2. 1/6-0)-1/6. (5.3.1)/(6.4.2).pi/2`
`I= pi/12-(5pi)/192`
∴` I= (11pi)/192`
`β (9/2,1/2)=(|~9/2|~1/2)/(|~5)= (7/2. 5/2. 3/2. 1/2. |~1/2 |~1/2)/(5.4.3.2.1)`
`β (9/2,1/2)=(105 pi)/384`
shaalaa.com
Exact Differential Equations
Is there an error in this question or solution?