Advertisements
Advertisements
Question
Evaluate : `int (1+logx)/(x(2+logx)(3+logx))dx`
Solution
Let `I=int (1+logx)/(x(2+logx)(3+logx))dx`
Put
`logx=t`
`1/xdx=dt`
`I=int(1+t)/((2+t)(3+t))dt`
consider
`(1+t)/((2+t)(3+t))=A/(2+t)+B/(3+t)`
`(1+t)=A(3+t)+B(2+t)`
A=-1,B=2
`(1+t)/((2+t)(3+t))=-1/(2+t)+2/(3+t)`
`I=int-1/(2+t)dt+int2/(3+t)dt`
`=-log|(2+t)|+2log|(3+t)|+c`
`=log[|((3+t)^2)/(2+t)|] +c`
`=log[|(3+logx)^2/(2+logx)|]+C`
APPEARS IN
RELATED QUESTIONS
Integrate the following functions with respect to x :
cot2x + tan2x
Integrate the following functions with respect to x :
`(sin^2x)/(1 + cosx)`
Integrate the following functions with respect to x :
`(sin4x)/sinx`
Integrate the following functions with respect to x :
sin2 5x
Integrate the following with respect to x :
`(sin sqrt(x))/sqrt(x)`
Integrate the following with respect to x :
`(sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x :
`tan x sqrt(sec x)`
Integrate the following with respect to x:
x sin 3x
Integrate the following with respect to x:
`"e"^(2x) sinx`
Integrate the following with respect to x:
`"e"^x ((2 + sin 2x)/(1 + cos 2x))`
Integrate the following with respect to x:\
`logx/(1 + log)^2`
Integrate the following with respect to x:
`(3x + 1)/(2x^2 - 2x + 3)`
Integrate the following with respect to x:
`(2x + 1)/sqrt(9 + 4x - x^2)`
Choose the correct alternative:
`int tan^-1 sqrt((1 - cos 2x)/(1 + cos 2x)) "d"x` is
Choose the correct alternative:
`int "e"^(- 4x) cos "d"x` is
Choose the correct alternative:
`int (sec^2x)/(tan^2 x - 1) "d"x`
Choose the correct alternative:
`int "e"^(- 7x) sin 5x "d"x` is
Choose the correct alternative:
`int (x + 2)/sqrt(x^2 - 1) "d"x` is
Choose the correct alternative:
`int "e"^(sqrt(x)) "d"x` is