Advertisements
Advertisements
Question
Evaluate A = `|(2, -3,5),(6, 0, 4),(1, 5, -7)|` Also find minor and cofactor of elements in the 2nd row of determinant and verify − a21.M21 + a22.M22 − a23.M23 = value of A
where M21, M22 , M23 are minor of a21 , a22, a23 and C21, C22, C23 are cofactor of a21, a22, a23
Solution
Let A = `|("a"_11, "a"_12, "a"_13),("a"_21, "a"_22, "a"_23),("a"_31, "a"_32, "a"_33)| = |(2, -3, 5),(6, 0, 4),(1, 5, -7)|`
∴ A = `2|(0, 4),(5, -7)| -(-3)|(6, 4),(1, -7)| + 5|(6, 0),(1, 5)|`
= 2 (0 – 20) + 3 (– 42 – 4) + 5 (30 – 0)
= 2 (– 20) + 3 (– 46) + 5 (30)
= – 40 – 138 + 150
= – 28 ...(1)
Also, a21 = 6, a22 = 0, a23 = 4
∴ M21 = `|(-3, 5),(5, -7)|` = 21 – 25 = – 4
∴ C21 = (– 1)2+1 M21 = – 1(– 4) = 4
M22 = `|(2, 5),(1, -7)|` = – 14 – 5 = – 19
∴ C22 = (– 1)2+2 M22 = 1(– 19) = – 19
M23 = `|(2, -3),(1, 5)|` = 10 – (– 3) = 13
∴ C23 = (– 1)2+3 M23 = – 1(13) = – 13
− a21 M21 + a22 M22 − a23 M23
= − 6( − 4) + 0( − 19) − 4(13)
= 24 − 0 − 52 = − 28
= value of A ...[By (1)]
APPEARS IN
RELATED QUESTIONS
Find the minor and cofactor of element of the determinant
D = `|(2, -1, 3),(1, 2, -1),(5, 7, 2)|`
Evaluate A = `|(2, -3,5),(6, 0, 4),(1, 5, -7)|` Also find minor and cofactor of elements in the 2nd row of determinant and verify a21 C21 + a22 C22 + a23 C23 = value of A
where M21, M22, M23 are minors of a21, a22, a23 and
C21, C22, C23 are cofactors of a21, a22, a23.
Find the value of determinant expanding along third column
`|(-1, 1, 2),(-2, 3, -4),(-3, 4, 0)|`
Answer the following question:
Evaluate determinant along second column
`|(1, -1, 2),(3, 2, -2),(0, 1, -2)|`
Answer the following question:
Find minor and cofactor of elements of the determinant:
`|(-1, 0, 4),(-2, 1, 3),(0, -4, 2)|`
Answer the following question:
Find minor and cofactor of elements of the determinant:
`|(1, -1, 2),(3, 0, -2),(1, 0, 3)|`
If Aij denotes the cofactor of the element aij of the determinant `|(2, -3, 5),(6, 0, 4),(1, 5, -7)|`, then value of a11A31 + a12A32 + a13A33 is ______.
The value of x obtained from the equation `|(x + a, b, c),(c, x + b, a),(a, b, x + c)|` = 0 will be ______.
The value of determinant `|((α^x + a^-x)^2, (α^x - α^-x)^2, 1),((β^x + β^-x)^2, (β^x - β^-x)^2, 1),((γ^x + γ^-x)^2, (γ^x - γ^-x)^2, 1)|`