English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Expand sin x in ascending powers x-π4 upto three non-zero terms - Mathematics

Advertisements
Advertisements

Question

Expand sin x in ascending powers `x - pi/4` upto three non-zero terms

Sum

Solution

Let f(x) = sin x

f(x) = sin x, `"f"(pi/4) = 1/sqrt(2)`

f(x) = cos x, `"f'"(pi/4) = 1/sqrt(2)`

f(x) = – sin x, `"f''"(pi/4) = - 1/sqrt(2)`

f(x) = – cos x, `"f'''"(pi/4) = - 1/sqrt(2)`

Taylor series of f(x) is

f(x) = `sum_("n" = 0)^("n" = oo) "a"_"n" (x - pi/4)^pi`

Where an = `("f"^(("n"))(pi/4))/("n"!)`

∴ The required expansion is

sin x = `1/sqrt(2) + 1/sqrt(2) ((x - pi/4))/(1!) - 1/sqrt(2) ((x - pi/4)^2)/(2!) - 1/sqrt(2) (x - pi/4)^3/(3!) + ...`

= `1/sqrt(2) [1 + ((x - pi/4))/(1!) - (x - pi/4)^2/(2!) - (x - pi/4)^3/(3!) + ...]`

= `sqrt(2)/2 [1 + ((x - pi/4))/(1!) - (x - pi/4)^2/(2!) - (x - pi/4)^2/(3!) + ...]`

shaalaa.com
Series Expansions
  Is there an error in this question or solution?
Chapter 7: Applications of Differential Calculus - Exercise 7.4 [Page 25]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 7 Applications of Differential Calculus
Exercise 7.4 | Q 3 | Page 25
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×