Advertisements
Advertisements
Question
Express `tan^-1(cos x/(1-sin x)), "where" (-pi)/2 <x<pi/2` in the simplest form.
Sum
Solution
`tan^-1(cos x/(1-sin x)) ...[therefore cos x = cos^2 x/2 - sin^2 x/2]`
`= tan^-1 [(cos^2 x/2-sin^2 x/2)/((cos x/2 - sin x/2))] ...[a^2-b^2 = (a+b)(a-b)]`
`= tan^-1 [(cos x/2+sin x/2)/((cos x/2 - sin x/2))]`
`= tan^-1 [(1+tan x/2)/(1 - tan x/2)]`
`= tan^-1 [(tan pi/4+tan x/2)/(1 - tan pi/4 tan x/2)]` ...`[tan(A+B) = (tanA+tanB)/(1-tanA.tanB)]`
`=tan^-1 (tan pi/4+x/2)`
`=pi/4+x/2`
shaalaa.com
Is there an error in this question or solution?