Advertisements
Advertisements
Question
Express the following equations in matrix form and solve them by method of reduction.
x + 3y = 2, 3x + 5y = 4
Solution
Matrix form of the given system of equations is
`[(1, 3),(3, 5)] [(x),(y)] = [(2),(4)]`
This is of the form AX = B,
where A = `[(1, 3),(3, 5)], "X" = [(x),(y)] "and B" = [(2),(4)]`
Applying R2 → R2 – 3R1, we get
`[(1, 3),(0, -4)] [(x),(y)] = [(2),(-2)]`
Hence, the original matrix A is reduced to an upper triangular matrix.
∴ `[(x + 3y),(0 - 4y)] = [(2),(-2)]`
∴ By euality of matrices, we get
x + 3y = 2 ...(i)
– 4y = – 2 ...(ii)
From equation (ii),
y = `(1)/(2)`
Sustituting y = `(1)/(2)` in equation (i), we get
`x + 3/2` = 2
∴ x = `2 - (3)/(2) = (1)/(2)`
∴ x = `(1)/(2) "and y" =(1)/(2)` is the required soution.
APPEARS IN
RELATED QUESTIONS
Solve the following equations by inversion method.
x + 2y = 2, 2x + 3y = 3
Solve the following equations by the reduction method.
2x + y = 5, 3x + 5y = – 3
Solve the following equations by the reduction method.
3x – y = 1, 4x + y = 6
Solve the following equations by the reduction method.
5x + 2y = 4, 7x + 3y = 5
Solve the following equations by inversion method:
x + y = 4, 2x - y = 5
Solve the following equations by the method of inversion:
x + y + z = - 1, y + z = 2, x + y - z = 3
Express the following equations in matrix form and solve them by the method of reduction:
x - y + z = 1, 2x - y = 1, 3x + 3y - 4z = 2
Solve the following equations by method of inversion.
2x + y = 5, 3x + 5y = – 3
The sum of the cost of one Economic book, one Co-operation book and one account book is ₹ 420. The total cost of an Economic book, 2 Co-operation books and an Account book is ₹ 480. Also the total cost of an Economic book, 3 Co-operation books and 2 Account books is ₹ 600. Find the cost of each book using matrix method.
Solve the following :
Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,
April 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 15000 | 13000 | 12000 |
Kantaram | 18000 | 15000 | 8000 |
May 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 18000 | 15000 | 12000 |
Kantaram | 21000 | 16500 | 16000 |
Find : The total sale in rupees for two months of each farmer for each crop.
Solve the following equations by method of inversion :
4x – 3y – 2 = 0, 3x – 4y + 6 = 0
Solve the following equations by method of inversion : x + y – z = 2, x – 2y + z = 3 and 2x – y – 3z = – 1
Solve the following equations by method of reduction :
x – 3y + z = 2 , 3x + y + z = 1 and 5x + y + 3z = 3
State whether the following statement is True or False:
If O(A) = m × n and O(B) = n × p with m ≠ p, then BA exists but AB does not exist.
Complete the following activity.
The cost of 4 kg potato, 3kg wheat and 2kg rice is ₹ 60. The cost of 1 kg potato, 2 kg wheat and 3kg rice is ₹ 45. The cost of 6 kg potato, 3 kg rice and 2 kg wheat is ₹ 70. Find the per kg cost of each item by matrix method.
Solution: Let the cost of potato, wheat and rice per kg be x, y and z respectively.
Therefore by given conditions,
4x + ( )y + 2( ) = ( )
x + 2y + ( )( ) = ( )
( )x + 2y + 3z = ( )
Matrix form of above equations is,
`[("( )", 3, "( )"),(1, "( )", 3),("( )", 2, "( )")] [(x),(y),(z)] =[("( )"), (45), ("( )")]`
R1 ↔ R2
`[(1, 2, 3),("( )", "( )", "( )"),(6, 2, 3)] [(x),(y),(z)] =[("( )"), (60), ("( )")]`
R2 – 4R1, R3 – 6R1
`[(1, 2, 3),("( )", -5, "( )"),(0, "( )", -15)] [(x),(y),(z)] =[(45), ("( )"), (-200)]`
`(-1)/5 "R"_2, (-1)/5 "R"_3`
`[("( )", 2, 3),(0, "( )", 2),(0, 2, "( )")] [(x),("( )"),(z)] =[(45), (24), (40)]`
R3 – 2R2
`[(1, 2, 3),(0, 1, 2),(0, 0, -1)] [(x),(y),(z)] =[("( )"), ("( )"), ("( )")]`
By pre multiplying we get,
x + 2y + ( )z = ( ) .....(i)
y + 2z = 24 ......(ii)
–z = ( ) ......(iii)
From (iii), we get, z = ( )
From (ii), we get, y = ( )
From (i), we get, x = ( )
Therefore the cost of Potato, Wheat and Rice per kg are _______, _______ and _______ respectively.
If the volume of the parallelepiped whose conterminus edges are along the vectors a, b, c is 12, then the volume of the tetrahedron whose conterminus edges are a + b, b + c and c + a is ______.
If A = `[(1, -1, 3), (2, 5, 4)]`, then R1 ↔ R2 and C3 → C3 + 2C2 gives ______
If `[(1, -1, x), (1, x, 1), (x, -1, 1)]` has no inverse, then the real value of x is ______
Solve the following system of equations by the method of reduction:
x + y + z = 6, y + 3z = 11, x + z = 2y.