Advertisements
Advertisements
Question
Solve the following equations by the reduction method.
2x + y = 5, 3x + 5y = – 3
Solution
The given equations can be written in the matrix form as:
`[(2,1),(3,5)][("x"),("y")]=[(5),(-3)]`
By 2R2 , we get,
`[(2,1),(6,10)][("x"),("y")]=[(5),(-6)]`
By R2 – 3R1, we get,
`[(2,1),(0,7)][("x"),("y")]=[(5),(-21)]`
∴ `[(2"x"+"y"),(0+7"y")]=[(5),(-21)]`
By equality of matrices,
2x + y = 5 ........(1)
7y = − 21 ........(2)
From (2), y = − 3
Substituting y = − 3 in (1), we get,
2x − 3 = 5
∴ 2x = 8
∴ x = 4
Hence, x = 4, y = − 3 is the required solution.
APPEARS IN
RELATED QUESTIONS
Solve the following equations by inversion method.
x + 2y = 2, 2x + 3y = 3
Solve the following equations by inversion method.
2x + 6y = 8, x + 3y = 5
Solve the following equations by the reduction method.
x + 3y = 2, 3x + 5y = 4
Solve the following equations by the reduction method.
3x – y = 1, 4x + y = 6
Solve the following equations by the reduction method.
5x + 2y = 4, 7x + 3y = 5
Solve the following equation by the method of inversion:
2x - y = - 2, 3x + 4y = 3
Solve the following equation by the method of inversion:
5x − y + 4z = 5, 2x + 3y + 5z = 2 and 5x − 2y + 6z = −1
Solve the following equations by the method of inversion:
x + y + z = - 1, y + z = 2, x + y - z = 3
Express the following equations in matrix form and solve them by the method of reduction:
x - y + z = 1, 2x - y = 1, 3x + 3y - 4z = 2
Express the following equations in matrix form and solve them by the method of reduction:
`x + y = 1, y + z = 5/3, z + x 4/33`.
Express the following equations in matrix form and solve them by the method of reduction:
2x - y + z = 1, x + 2y + 3z = 8, 3x + y - 4z = 1.
The cost of 4 pencils, 3 pens, and 2 books is ₹ 150. The cost of 1 pencil, 2 pens, and 3 books is ₹ 125. The cost of 6 pencils, 2 pens, and 3 books is ₹ 175. Find the cost of each item by using matrices.
Solve the following equations by the method of inversion:
2x + 3y = - 5, 3x + y = 3
Express the following equations in matrix form and solve them by the method of reduction:
x + 3y + 2z = 6,
3x − 2y + 5z = 5,
2x − 3y + 6z = 7
Solve the following equations by method of inversion.
x + 2y = 2, 2x + 3y = 3
Solve the following equation by the method of inversion.
2x – y + z = 1,
x + 2y + 3z = 8,
3x + y – 4z = 1
Solve the following equations by method of inversion.
x + y + z = 1, x – y + z = 2 and x + y – z = 3
Express the following equations in matrix form and solve them by method of reduction.
x + 3y = 2, 3x + 5y = 4
Express the following equations in matrix form and solve them by method of reduction.
3x – y = 1, 4x + y = 6
Express the following equations in matrix form and solve them by method of reduction.
x + y + z = 1, 2x + 3y + 2z = 2 and x + y + 2z = 4
The total cost of 3 T.V. and 2 V.C.R. is ₹ 35,000. The shopkeeper wants profit of ₹1000 per television and ₹ 500 per V.C.R. He can sell 2 T.V. and 1 V.C.R. and get the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. and a V.C.R.
The sum of the cost of one Economic book, one Co-operation book and one account book is ₹ 420. The total cost of an Economic book, 2 Co-operation books and an Account book is ₹ 480. Also the total cost of an Economic book, 3 Co-operation books and 2 Account books is ₹ 600. Find the cost of each book using matrix method.
If x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6, then (y, z) = _______
Find x, y, z, if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, - 2),(1, 3)]} [(2),(1)] = [(x - 1),(y + 1),(2z)]`
Solve the following :
Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,
April 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 15000 | 13000 | 12000 |
Kantaram | 18000 | 15000 | 8000 |
May 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 18000 | 15000 | 12000 |
Kantaram | 21000 | 16500 | 16000 |
Find : The total sale in rupees for two months of each farmer for each crop.
Solve the following :
Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,
April 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 15000 | 13000 | 12000 |
Kantaram | 18000 | 15000 | 8000 |
May 2016 (in ₹.) | |||
Rice | Wheat | Groundnut | |
Shantaram | 18000 | 15000 | 12000 |
Kantaram | 21000 | 16500 | 16000 |
Find : the increase in sale from April to May for every crop of each farmer.
Solve the following equations by method of inversion :
4x – 3y – 2 = 0, 3x – 4y + 6 = 0
Solve the following equations by method of inversion : x + y – z = 2, x – 2y + z = 3 and 2x – y – 3z = – 1
Solve the following equations by method of inversion : x – y + z = 4, 2x + y – 3z = 0 , x + y + z = 2
Solve the following equations by method of reduction :
x + 2y - z = 3 , 3x – y + 2z = 1 and 2x – 3y + 3z = 2
The sum of three numbers is 6. If we multiply third number by 3 and add it to the second number we get 11. By adding the first and third number we get a number which is double the second number. Use this information and find a system of linear equations. Find the three numbers using matrices.
If A2 + 5A + 3I = 0, |A| ≠ 0, then A–1 = ______
State whether the following statement is True or False:
If O(A) = m × n and O(B) = n × p with m ≠ p, then BA exists but AB does not exist.
Complete the following activity.
The cost of 4 kg potato, 3kg wheat and 2kg rice is ₹ 60. The cost of 1 kg potato, 2 kg wheat and 3kg rice is ₹ 45. The cost of 6 kg potato, 3 kg rice and 2 kg wheat is ₹ 70. Find the per kg cost of each item by matrix method.
Solution: Let the cost of potato, wheat and rice per kg be x, y and z respectively.
Therefore by given conditions,
4x + ( )y + 2( ) = ( )
x + 2y + ( )( ) = ( )
( )x + 2y + 3z = ( )
Matrix form of above equations is,
`[("( )", 3, "( )"),(1, "( )", 3),("( )", 2, "( )")] [(x),(y),(z)] =[("( )"), (45), ("( )")]`
R1 ↔ R2
`[(1, 2, 3),("( )", "( )", "( )"),(6, 2, 3)] [(x),(y),(z)] =[("( )"), (60), ("( )")]`
R2 – 4R1, R3 – 6R1
`[(1, 2, 3),("( )", -5, "( )"),(0, "( )", -15)] [(x),(y),(z)] =[(45), ("( )"), (-200)]`
`(-1)/5 "R"_2, (-1)/5 "R"_3`
`[("( )", 2, 3),(0, "( )", 2),(0, 2, "( )")] [(x),("( )"),(z)] =[(45), (24), (40)]`
R3 – 2R2
`[(1, 2, 3),(0, 1, 2),(0, 0, -1)] [(x),(y),(z)] =[("( )"), ("( )"), ("( )")]`
By pre multiplying we get,
x + 2y + ( )z = ( ) .....(i)
y + 2z = 24 ......(ii)
–z = ( ) ......(iii)
From (iii), we get, z = ( )
From (ii), we get, y = ( )
From (i), we get, x = ( )
Therefore the cost of Potato, Wheat and Rice per kg are _______, _______ and _______ respectively.
If the volume of the parallelepiped whose conterminus edges are along the vectors a, b, c is 12, then the volume of the tetrahedron whose conterminus edges are a + b, b + c and c + a is ______.
If `[(1, -1, x), (1, x, 1), (x, -1, 1)]` has no inverse, then the real value of x is ______
Adjoint of ______
If A =`[(1, -1), (2, 3)]` and adj (A) = `[(a, b), (-2, 1)]`, then ______
Solve the following system of equations by the method of inversion.
x – y + z = 4, 2x + y – 3z = 0, x + y + z = 2
Solve the following system of equations by the method of reduction:
x + y + z = 6, y + 3z = 11, x + z = 2y.