English

Express the following equations in matrix form and solve them by the method of reduction: x + 3y + 2z = 6, 3x − 2y + 5z = 5, 2x − 3y + 6z = 7 - Mathematics and Statistics

Advertisements
Advertisements

Question

Express the following equations in matrix form and solve them by the method of reduction:

x + 3y + 2z = 6,

3x − 2y + 5z = 5,

2x − 3y + 6z = 7

Sum

Solution

Given equations are

x + 3y + 2z = 6

3x − 2y + 5z = 5

2x − 3y + 6z = 7

The matrix form is

`[(1, 3, 2),(3, -2, 5),(2, -3, 6)][(x),(y),(z)] = [(6),(5),(7)]`

Using `R_2 -> R_2 - 3R_1, R_3 -> R_3 - 2R_1`

`[(1, 3, 2),(0, -11, -1),(0, -9, 2)][(x),(y),(z)] = [(6),(-13), (-5)]`

Using `R_2 -> -1/11 R_2`

`[(1, 3, 2),(0, 1, 1/11),(0, -9, 2)][(x),(y),(z)] = [(6),(13/11), (-5)]`

Using `R_3 -> R_3 + 9R_2`

`[(1, 3, 2),(0, 1, 1/11),(0, 0, 31/11)][(x),(y),(z)] = [(6),(13/11),(62/11)]`

Putting the original equations for m in writing as

x + 3y + 2z = 6   ...(1)

`y + 1/11z = 13/11`  ...(2)

`31/11z = 62/11`  ...(3)

From (3): z = 2

From (2): `y + 2/11 = 13/11`

∴ y = 1

From (1): x + 3 + 4 = 6

∴ x = – 1

∴ x = – 1, y = 1, z = 2

shaalaa.com
Application of Matrices
  Is there an error in this question or solution?
Chapter 2: Matrics - Miscellaneous exercise 2 (B) [Page 63]

APPEARS IN

RELATED QUESTIONS

Solve the following equations by inversion method.

2x + 6y = 8, x + 3y = 5


Solve the following equations by the reduction method.

2x + y = 5, 3x + 5y = – 3


Solve the following equations by the reduction method.

x + 3y = 2, 3x + 5y = 4


Solve the following equations by the reduction method.

3x – y = 1, 4x + y = 6


Solve the following equation by the method of inversion:

2x - y = - 2, 3x + 4y = 3


Solve the following equations by the method of inversion:

x + y+ z = 1, 2x + 3y + 2z = 2,
ax + ay + 2az = 4, a ≠ 0.


Solve the following equation by the method of inversion:

5x − y + 4z = 5, 2x + 3y + 5z = 2 and 5x − 2y + 6z = −1


Express the following equations in matrix form and solve them by the method of reduction:

x - y + z = 1, 2x - y = 1, 3x + 3y - 4z = 2


Express the following equations in matrix form and solve them by the method of reduction:

`x + y = 1, y + z = 5/3, z + x 4/33`.


Express the following equations in matrix form and solve them by the method of reduction:

2x - y + z = 1, x + 2y + 3z = 8, 3x + y - 4z = 1.


The cost of 4 pencils, 3 pens, and 2 books is ₹ 150. The cost of 1 pencil, 2 pens, and 3 books is ₹ 125. The cost of 6 pencils, 2 pens, and 3 books is ₹ 175. Find the cost of each item by using matrices.


The sum of three numbers is 6. Thrice the third number when added to the first number, gives 7. On adding three times the first number to the sum of second and third numbers, we get 12. Find the three number by using matrices.


An amount of ₹ 5000 is invested in three types of investments, at interest rates 6%, 7%, 8% per annum respectively. The total annual income from these investments is ₹ 350. If the total annual income from the first two investments is ₹ 70 more than the income from the third, find the amount of each investment using matrix method.


Solve the following equations by the method of inversion:

2x + 3y = - 5, 3x + y = 3


Solve the following equations by method of inversion.
x + 2y = 2, 2x + 3y = 3


Solve the following equations by method of inversion.
2x + y = 5, 3x + 5y = – 3


Express the following equations in matrix form and solve them by method of reduction.
x + 3y  = 2, 3x + 5y = 4


Express the following equations in matrix form and solve them by method of reduction.

3x – y = 1, 4x + y = 6


The total cost of 3 T.V. and 2 V.C.R. is ₹ 35,000. The shopkeeper wants profit of ₹1000 per television and ₹ 500 per V.C.R. He can sell 2 T.V. and 1 V.C.R. and get the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. and a V.C.R.


The sum of the cost of one Economic book, one Co-operation book and one account book is ₹ 420. The total cost of an Economic book, 2 Co-operation books and an Account book is ₹ 480. Also the total cost of an Economic book, 3 Co-operation books and 2 Account books is ₹ 600. Find the cost of each book using matrix method.


Find x, y, z, if `{5[(0, 1),(1, 0),(1, 1)] - [(2, 1),(3, - 2),(1, 3)]} [(2),(1)] = [(x - 1),(y + 1),(2z)]`


Solve the following :

Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,

April 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 15000 13000 12000
Kantaram 18000 15000 8000
May 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 18000 15000 12000
Kantaram 21000 16500 16000

Find : The total sale in rupees for two months of each farmer for each crop.


Solve the following :

Two farmers Shantaram and Kantaram cultivate three crops rice, wheat and groundnut. The sale (in Rupees) of these crops by both the farmers for the month of April and May 2016 is given below,

April 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 15000 13000 12000
Kantaram 18000 15000 8000
May 2016 (in ₹.)
  Rice Wheat Groundnut
Shantaram 18000 15000 12000
Kantaram 21000 16500 16000

Find : the increase in sale from April to May for every crop of each farmer.


Solve the following equations by method of inversion :

4x – 3y – 2 = 0, 3x – 4y + 6 = 0


Solve the following equations by method of inversion : x + y – z = 2, x – 2y + z = 3 and 2x – y – 3z = – 1


Solve the following equations by method of inversion : x – y + z = 4, 2x + y – 3z = 0 , x + y + z = 2


If A2 + 5A + 3I = 0, |A| ≠ 0, then A–1 = ______


State whether the following statement is True or False:

If O(A) = m × n and O(B) = n × p with m ≠ p, then BA exists but AB does not exist.


If A =`[(1, -1), (2, 3)]` and adj (A) = `[(a, b), (-2, 1)]`, then ______ 


Solve the following system of equations by the method of reduction:

x + y + z = 6, y + 3z = 11, x + z = 2y.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×