Advertisements
Advertisements
Question
Solve the following equations by method of reduction :
x + 2y - z = 3 , 3x – y + 2z = 1 and 2x – 3y + 3z = 2
Solution
The matrix form of the given system of equations is
`[(1, 2, -1),(3, -1, 2),(2, -3, 3)] [(x),(y),(z)] = [(3),(1),(2)]`
This is of the form AX = B, where
A = `[(1, 2, -1),(3, -1, 2),(2, -3, 3)], "X" = [(x),(y),(z)] "and B"= [(3),(1),(2)]`
Applying R2 → R2 – 3R1 and R3 → R3 – 2R1, we get
`[(1, 2, -1),(0, -7, 5),(0, -7, 5)] [(x),(y),(z)] = [(3),(-8),(-4)]`
Applying R3 → R3 – R2, we get
`[(1, 2, -1),(0, -7, 5),(0, 0, 2)] [(x),(y),(z)] = [(3),(-8),(4)]`
Hence, the original matrix A is reduced to an upper triangular matrix.
∴ `[(x + 2y + z),(0 - 7y - z),(0 + 0 + 2z)] = [(3),(-8),(4)]`
By equality of matrices, we get
x + 2y + z = 3 ...(i)
– 7y –z = – 8
i.e., 7y + z = 8 ...(ii)
2z = 4
∴ z = 2
Substituting z = 2 in equation (ii), we get
7y + 2 = 8
∴ 7y = 6
∴ y = `(6)/(7)`
Substituting y = `6/(7)` and z = 2 in equation (i), we get
`x + 2(6/7) + 2` = 3
∴ x = `3 - 2 - 12/7 = (-5)/(7)`
∴ x = `-5/(7), y = (6)/(7)` and z = 2 is the required solution.
APPEARS IN
RELATED QUESTIONS
Solve the following equations by inversion method.
2x + 6y = 8, x + 3y = 5
Solve the following equations by the reduction method.
2x + y = 5, 3x + 5y = – 3
Solve the following equations by the reduction method.
5x + 2y = 4, 7x + 3y = 5
Solve the following equations by inversion method:
x + y = 4, 2x - y = 5
Solve the following equations by the method of inversion:
x + y+ z = 1, 2x + 3y + 2z = 2,
ax + ay + 2az = 4, a ≠ 0.
Solve the following equation by the method of inversion:
5x − y + 4z = 5, 2x + 3y + 5z = 2 and 5x − 2y + 6z = −1
Express the following equations in matrix form and solve them by the method of reduction:
x - y + z = 1, 2x - y = 1, 3x + 3y - 4z = 2
Express the following equations in matrix form and solve them by the method of reduction:
x + 2y + z = 8, 2x + 3y - z = 11, 3x - y - 2z = 5.
Solve the following equations by method of inversion.
x + 2y = 2, 2x + 3y = 3
Express the following equations in matrix form and solve them by method of reduction.
x + 3y = 2, 3x + 5y = 4
The total cost of 3 T.V. and 2 V.C.R. is ₹ 35,000. The shopkeeper wants profit of ₹1000 per television and ₹ 500 per V.C.R. He can sell 2 T.V. and 1 V.C.R. and get the total revenue as ₹ 21,500. Find the cost price and the selling price of a T.V. and a V.C.R.
The sum of the cost of one Economic book, one Co-operation book and one account book is ₹ 420. The total cost of an Economic book, 2 Co-operation books and an Account book is ₹ 480. Also the total cost of an Economic book, 3 Co-operation books and 2 Account books is ₹ 600. Find the cost of each book using matrix method.
If x + y + z = 3, x + 2y + 3z = 4, x + 4y + 9z = 6, then (y, z) = _______
Solve the following equations by method of inversion :
4x – 3y – 2 = 0, 3x – 4y + 6 = 0
Solve the following equations by method of inversion : x – y + z = 4, 2x + y – 3z = 0 , x + y + z = 2
Complete the following activity.
The cost of 4 kg potato, 3kg wheat and 2kg rice is ₹ 60. The cost of 1 kg potato, 2 kg wheat and 3kg rice is ₹ 45. The cost of 6 kg potato, 3 kg rice and 2 kg wheat is ₹ 70. Find the per kg cost of each item by matrix method.
Solution: Let the cost of potato, wheat and rice per kg be x, y and z respectively.
Therefore by given conditions,
4x + ( )y + 2( ) = ( )
x + 2y + ( )( ) = ( )
( )x + 2y + 3z = ( )
Matrix form of above equations is,
`[("( )", 3, "( )"),(1, "( )", 3),("( )", 2, "( )")] [(x),(y),(z)] =[("( )"), (45), ("( )")]`
R1 ↔ R2
`[(1, 2, 3),("( )", "( )", "( )"),(6, 2, 3)] [(x),(y),(z)] =[("( )"), (60), ("( )")]`
R2 – 4R1, R3 – 6R1
`[(1, 2, 3),("( )", -5, "( )"),(0, "( )", -15)] [(x),(y),(z)] =[(45), ("( )"), (-200)]`
`(-1)/5 "R"_2, (-1)/5 "R"_3`
`[("( )", 2, 3),(0, "( )", 2),(0, 2, "( )")] [(x),("( )"),(z)] =[(45), (24), (40)]`
R3 – 2R2
`[(1, 2, 3),(0, 1, 2),(0, 0, -1)] [(x),(y),(z)] =[("( )"), ("( )"), ("( )")]`
By pre multiplying we get,
x + 2y + ( )z = ( ) .....(i)
y + 2z = 24 ......(ii)
–z = ( ) ......(iii)
From (iii), we get, z = ( )
From (ii), we get, y = ( )
From (i), we get, x = ( )
Therefore the cost of Potato, Wheat and Rice per kg are _______, _______ and _______ respectively.
If `[(1, -1, x), (1, x, 1), (x, -1, 1)]` has no inverse, then the real value of x is ______
If A =`[(1, -1), (2, 3)]` and adj (A) = `[(a, b), (-2, 1)]`, then ______
Solve the following system of equations by the method of reduction:
x + y + z = 6, y + 3z = 11, x + z = 2y.