Advertisements
Advertisements
Question
Factorise : (a2 − b2) c + (b2 − c2)a
Solution
(a2 − b2) c + (b2 − c2)a
Use the difference of squares formula:
x2 − y2 = (x − y)(x + y)
Apply this to both a2 − b2 and b2−c2.
- a2 − b2 = (a − b)(a + b)
- b2 − c2 = (b − c)(b + c)
Substitute these into the expression:
(a2 − b2) c + (b2 − c2) a = (a − b) (a + b) c + (b − c) (b + c) a
Group the expression by factoring out common terms later:
(a − b) c (a+b) + (b − c) a (b + c)
(a2 − b2) c + (b2 − c2) a
APPEARS IN
RELATED QUESTIONS
Factorise by the grouping method :
`a^2 + 1/a^2 - 2 - 3a + 3/a`
Factorise : ab - 2b + a2 - 2a
Factorise : 2a - 4b - xa + 2bx
Factorise : 2ab2c - 2a + 3b3c - 3b - 4b2c2 + 4c
Factorise: 7b2 - 8b + 1
factorise: 2a2 - 17ab + 26b2
factorise: x(3x + 14) + 8
factorise: x2y2 - 3xy - 40
Factorise the following by grouping the terms:
x + y + m(x + y)
Factorise the following by grouping the terms:
`(1)/(25x^2) + 16x^2 + (8)/(5) - 12x - (3)/(5x)`