Advertisements
Advertisements
Question
Factorise.
x4 − (y + z)4
Sum
Solution
x4 − (y + z)4
= (x2)2 − [(y + z)2]2
Using the identity a2 − b2 = (a − b) (a + b)
= [x2 − (y + z)2] [x2 + (y + z)2]
Again, using a2 − b2 = (a − b) (a + b)
= [x − (y + z)] [x + (y + z)] [x2 + (y + z)2]
= (x − y + z) (x + y + z) [x2 + (y + z)2]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Factorise the following expression.
a2 + 8a + 16
Factorise the following expression.
p2 − 10p + 25
Factorise.
(x2 − 2xy + y2) − z2
Factorise.
25a2 − 4b2 + 28bc − 49c2
Factorise the expression.
(lm + l) + m + 1
Factorise the expression.
y (y + z) + 9 (y + z)
Factorise the expression.
10ab + 4a + 5b + 2
Factorise.
p4 − 81
Factorise 4y2 – 12y + 9
Factorise 49p2 – 36