Advertisements
Advertisements
Question
Factorise.
x4 − (x − z)4
Sum
Solution
x4 − (x − z)4
= (x2)2 − [(x − z)2]2
Using the identity a2 − b2 = (a − b) (a + b)
= [x2 − (x − z)2] [x2 + (x − z)2]
= [x − (x − z)] [x + (x − z)] [x2 + (x − z)2]
= z (2x − z) [x2 + x2 − 2xz + z2]
= z (2x − z) (2x2 − 2xz + z2)
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Factorise the following expression.
(l + m)2 − 4lm (Hint: Expand (l + m)2 first)
Factorise.
16x5 − 144x3
Factorise.
(l + m)2 − (l − m)2
Factorise the expression.
5y2 − 20y − 8z + 2yz
Factorise the expression.
10ab + 4a + 5b + 2
Factorise.
a4 − b4
Factorise.
p4 − 81
Factorise the given expression.
p2 + 6p − 16
Factorise a2 – 2ab + b2 – c2.
Factorise the following by taking out the common factor
3y3 – 48y