Advertisements
Advertisements
Question
Factorise.
(l + m)2 − (l − m)2
Sum
Solution
(l + m)2 − (l − m)2
Using the identity a2 − b2 = (a − b) (a + b)
= [(l + m) + (l − m)] [(l + m) − ( l − m)]
= (l + m + l − m) (l + m − l + m)
= (2 m) (2 l)
= 4 lm
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Factorise the following expression.
49y2 + 84yz + 36z2
Factorise.
9x2y2 − 16
Factorise.
(x2 − 2xy + y2) − z2
Factorise the expression.
2x3 + 2xy2 + 2xz2
Factorise.
p4 − 81
Factorise.
x4 − (y + z)4
Factorise.
x4 − (x − z)4
Factorise the following expression.
p2 + 6p + 8
Factorise 4y2 – 12y + 9
Factorise 49p2 – 36