Advertisements
Advertisements
Question
Factorise.
a4 − 2a2b2 + b4
Sum
Solution
a4 − 2a2b2 + b4
= (a2)2 − 2a2b2 + (b2)2
Using the identity (a − b)2 = a2 − 2ab + b2
= (a2 − b2)2
Using the identity a2 − b2 = (a − b) (a + b)
= [(a − b) (a + b)]2
= (a − b)2 (a + b)2
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Factorise the following expression.
49y2 + 84yz + 36z2
Factorise.
49x2 − 36
Factorise.
(l + m)2 − (l − m)2
Factorise.
(x2 − 2xy + y2) − z2
Factorise.
25a2 − 4b2 + 28bc − 49c2
Factorise the expression.
7p2 + 21q2
Factorise the expression.
y (y + z) + 9 (y + z)
Factorise.
p4 − 81
Factorise the given expression.
p2 + 6p − 16
Factorise m4 – 256