English

Figure (A) Shows a Thin Liquid Film Supporting a Small Weight = 4.5 × 10–2 N. What is the Weight Supported by a Film of the Same Liquid at the Same Temperature in Fig. (B) and (C)? Explain Your Answer Physically - Physics

Advertisements
Advertisements

Question

Figure  (a) shows a thin liquid film supporting a small weight = 4.5 × 10–2 N. What is the weight supported by a film of the same liquid at the same temperature in Fig. (b) and (c)? Explain your answer physically.

Solution 1

Take case (a):

The length of the liquid film supported by the weight, l = 40 cm = 0.4 cm

The weight supported by the film, W = 4.5 × 10–2 N

A liquid film has two free surfaces.

∴Surface tension  = W2l

=4.5×10-22×0.4=5.625×10-2Mn-1

In all the three figures, the liquid is the same. Temperature is also the same for each case. Hence, the surface tension in figure (b) and figure (c) is the same as in figure (a), i.e., 5.625 × 10–2 N m–1.

Since the length of the film in all the cases is 40 cm, the weight supported in each case is 4.5 × 10–2 N.

shaalaa.com

Solution 2

(a) Here, length of the film supporting the weight = 40 cm = 0.4 m. Total weight supported (or force) = 4.5 x 10-2 N.

Film has two free surfaces, Surface tension, S =4.5 x 10-2/2 x 0.4 =5.625 x 10-2 Nm-1
Since the liquid is same for all the cases (a), (b) and (c), and temperature is also same, therefore surface tension for cases (b) and (c) will also be the same = 5.625 x 10-2. In Fig. 7(b), 38(b) and (c), the length of the film supporting the weight is also the saihe as that of (a), hence the total weight supported in each case is 4.5 x 10-2 N.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Mechanical Properties of Fluids - Exercises [Page 269]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 10 Mechanical Properties of Fluids
Exercises | Q 18 | Page 269

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The surface tension of water at 0ºc is 75·5 dyne/cm. Find surface tension of water at 25°C. [ α for water = 0·0021/°C ]


The contact angle between pure water and pure silver is 90°. If a capillary tube made of silver is dipped at one end in pure water, will the water rise in the capillary?


Which of the following graphs may represent the relation between the capillary rise hand the radius r of the capillary?


Find the excess pressure inside (a) a drop of mercury of radius 2 mm (b) a soap bubble of radius 4 mm and (c) an air bubble of radius 4 mm formed inside a tank of water. Surface tension of mercury, soap solution and water are 0.465 N m−1, 0.03 N m−1 and 0.076 N m−1 respectively.


A solid sphere of radius 5 cm floats in water. If a maximum load of 0.1 kg can be put on it without wetting the load, find the specific gravity of the material of the sphere.


A drop of oil placed on the surface of water spreads out. But a drop of water place on oil contracts to a spherical shape. Why?


Is surface tension a vector?


The free surface of oil in a tanker, at rest, is horizontal. If the tanker starts accelerating the free surface will be titled by an angle θ. If the acceleration is a ms–2, what will be the slope of the free surface?


The sufrace tension and vapour pressure of water at 20°C is 7.28 × 10–2 Nm–1 and 2.33 × 103 Pa, respectively. What is the radius of the smallest spherical water droplet which can form without evaporating at 20°C?


When one end of the capillary is dipped in water, the height of water column is 'h'. The upward force of 105 dyne due to surface tension is balanced by the force due to the weight of water column. The inner circumference of capillary is ______.

(Surface tension of water = 7 × 10-2 N/m)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.