Advertisements
Advertisements
Question
Find: `int (2x + 1)/((x + 1)^2(x - 1)) dx`
Solution
Let I = `int (2x + 1)/((x + 1)^2(x - 1)) dx`
Let `(2x + 1)/((x +1)^2 (x - 1)) = A/((x + 1)) + b/((x + 1)^2) + C/((x - 1))`
2x + 1 = A(x + 1)(x − 1) + B(x − 1) + C(x + 1)2
2x + 1 = A(x2 − 1) + Bx − B + C(x2 + 2x +1)
On comparing, we get
A + C = 0; B + 2C = 2 and − A − B + C = 1
On solving, we get
A = `(-3)/4`, B = `1/2` and C = `3/4`
∴ `(2x + 1)/((x + 1)^2(x - 1)) = (-3)/(4(x + 1)) + (1)/(2(x + 1)^2) + 3/(4(x - 1))`
Thus, `int (2x + 1)/((x + 1)^2(x - 1)) dx`
= `-3/4 int 1/((x + 1)) dx + 1/2 int 1/(x + 1)^2 dx + 3/4 int 1/((x - 1)) dx`
= `-3/4 log |x + 1| + 1/2 I_1 + 3/4 log |x -1| + C_1`
How, `I_1 = int 1/(x + 1)^2 dx`
let x + 1 = u ⇒ dx + du
∴ `I_1 = int 1/u^2 du = u^(-2+1)/(-2 + 1) + C_2`
= `-1/u + C_2`
= `- 1/(x + 1) + C_2`
Therefore, `int (2x + 1)/((x + 1)^2(x - 1))dx`
= `-3/4 log |x + 1| - 1/(2(x + 1)) + 3/4 log |x - 1| + C`