Advertisements
Advertisements
Question
Find: `int(2x)/((x^2+1)(x^2-4)) dx`
Sum
Solution
Let `I = int(2x)/((x^2+1)(x^2-4)) dx`
Put x2 = y ⇒ 2x.dx = dy
`I = int dy/ ((y+1)(y-4))`
`int (A/(y+1)+B/(y-4)).dy`
Let `A/(y+1)+B/(y-4)=1/((y+1)(y-4))`
⇒ A(y − 4) + B(y + 1) = 1
⇒ (A + B)y − 4A + B = 1 + 0y
After equating, we get
A + B = 0 & B − 4A = 1
Solving we get,
`A=(-1)/5 & B = 1/5`
put value of A & B in I, we get
`I = (-1)/5 int dy/(y+1) + 1/5 int dy/(y-4)`
`= (-1)/5 log (y+1) + 1/5 log (y-4) + C`
`= (-1)/5 log (x^2+1)+1/5 log(x^2-4) + C`
shaalaa.com
Is there an error in this question or solution?