Advertisements
Advertisements
Question
Find `dy/dx, if y = (cos x)^x + cos^-1sqrtx` is given.
Sum
Solution
Given `y=(cosx)^x+cos^-1sqrtx` ...(i)
Let `p = (cosx)^x and q = cos^-1 sqrtx`
for p = (cos x)x
Taking log both side
log p = x log |(cos x)|
Differentiating both side w.r.t. x
`1/p (dp)/dx = x/cos x (-sinx)+log |(cosx)|`
`(dp)/dx = p[log |(cos x)| - x tan x]`
= (cos x)x [log |cos x| -x tan x] ...(ii)
Also q = `cos^-1 sqrtx` ...(iii)
⇒ `(dq)/dx = (-1)/sqrt(1-(sqrtx)^2)xx1/(2sqrtx)`
`= (-1)/(2 sqrtx - sqrt(1-x))`
Now y = `(cos x)^x + cos^(−1)sqrtx` ...(from (i)
y = p + q
⇒ `dy/dx = (dp)/dx + (dq)/dx` ...(from (ii) & (iii))
`dy/dx = (cosx)^x [log |cos x| -x tan x] - 1/(2sqrtx-sqrt(1-x))`
shaalaa.com
Is there an error in this question or solution?